Incremental learning written in C++ exposed in Python
Project description
ml-rapids: Incremental learning written in C++ exposed in Python
ml-rapids
implements incremental learning methods in C++ and exposes them via SWIG in Python. Installation can be achieved simply with pip install ml_rapids
. You can test your installation with running Python:
# testing ml-rapids
import ml_rapids
ml_rapids.test()
Further documentation is available here:
Implemented incremental learning methods
- Classification
- Majority Class
- Naive Bayes
- Logistic Regression
- Perceptron
- VFDT (Very Fast Decision Trees) aka Hoeffding Trees
- HAT (Hoeffding Adaptive Trees)
- Bagging
- Regression
- /
All the methods implement sklearn
incremantal learner interface (includes fit
, partial_fit
and predict
methods).
Future plans
Streaming random forest on top of Hoeffding trees will be implemented.
The library will be exposed via also via npm
packages.
Development
Development notes can be read here.
Python deployment notes can be read here.
Acknowledgements
ml-rapids
is developed by AILab at Jozef Stefan Institute.
This repository is based strongly on streamDM-cpp.
Project has received funding from European Union's Horizon 2020 Research and Innovation Programme under the Grant Agreement 776115 (PerceptiveSentinel).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file ml-rapids-0.0.1.7.tar.gz
.
File metadata
- Download URL: ml-rapids-0.0.1.7.tar.gz
- Upload date:
- Size: 156.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | df6a46d84db4237cbff31079b8150e8c36c41d43b1093de3a874c75c6b18d75b |
|
MD5 | f1176ca191dc269a3fe80db97505d3ed |
|
BLAKE2b-256 | 838af55dbb2e47b915172c05060a8a321cca066cc41455db6b6386eea26b3ac7 |
File details
Details for the file ml_rapids-0.0.1.7-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 288.0 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc46c818c019f8561ca9249dd5fdb2b13353f6cfa20bebc1323ca5fa7ae52c06 |
|
MD5 | 2d7e2c45509e913cded71bbd4085edb5 |
|
BLAKE2b-256 | a3272971ae449a527098ce058cf06d7a9f2407760c53bb360c77ce2285832ef1 |
File details
Details for the file ml_rapids-0.0.1.7-cp38-cp38-win32.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp38-cp38-win32.whl
- Upload date:
- Size: 226.9 kB
- Tags: CPython 3.8, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe3650aa4bc336611cebad43cf0a73b8f733807ce4d2eb6d6149308b58b74237 |
|
MD5 | fd76eb2edfa002ec8f839e680a97204d |
|
BLAKE2b-256 | d028c4a061ab07e525680f7fd58ea735ae08bae4590612e890fe686368c59d6e |
File details
Details for the file ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_ppc64le.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_ppc64le.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3dca37941d25b89d01ce5a8492e5d842d92ff4d6e4b0e5fbf39ad7373ff801c3 |
|
MD5 | db2dd732dcd2409740c89b3b47fd36df |
|
BLAKE2b-256 | 5c3f822f9bdd63443cc8fa2b25be2f150be43f79de8eced9e4cf1a1b35209da0 |
File details
Details for the file ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_aarch64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_aarch64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb307cabe0fb750fbcfc6c6d29a2c52127f68f59a2240c4f7f11162f6512e5e9 |
|
MD5 | 68ceb4e9c75a27f803861c044ead5f24 |
|
BLAKE2b-256 | eb35fa475dcbf1d98a7492d4e30303b600fa7bdf227df9fc84683e06ef40b764 |
File details
Details for the file ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_x86_64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_x86_64.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7c3541b0dd0c57605da9dc67714b87d73196b483a51085361ab96f1481d6a85f |
|
MD5 | ee9d03fbc11bc5d79653feedb9cfb0ab |
|
BLAKE2b-256 | 677f82360d4f63b3f3f511add8dbb789916337dd2ebc48f985fe1751ccb7f4f8 |
File details
Details for the file ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_i686.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_i686.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.8, manylinux: glibc 2.12+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1011d9a07fdce0fc4c0f397b1a2f5effaa553e60fa5bf7123c8db10161b038ef |
|
MD5 | d5673339f97e184b2e38636fb323f770 |
|
BLAKE2b-256 | 12df8342b66ae126f4346dc87cb895889675e6c0c733fb01fee5d82d1c35f896 |
File details
Details for the file ml_rapids-0.0.1.7-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 313.0 kB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8878113a14fa605b53e0619c15a8ddfe075335948cb3b252fedc761ae7f555c1 |
|
MD5 | 7d80a43d2825f0eb3bd01274b9f2e5cb |
|
BLAKE2b-256 | b42347dff0bc2713299f893fc0fdf2417b8f30e4b7611d67a0678d7ce9825703 |
File details
Details for the file ml_rapids-0.0.1.7-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 287.4 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb3a456ed076bfa508aa1296dcf36bccdb855bbfa2074b09cf632d13f9816757 |
|
MD5 | 7b8cba6bf5a66b586fb69dc3db3fb1a4 |
|
BLAKE2b-256 | 58dabe72c96f86be9f59247358d1bd58bb82b1d0538489768badd2ee99b8c1aa |
File details
Details for the file ml_rapids-0.0.1.7-cp37-cp37m-win32.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp37-cp37m-win32.whl
- Upload date:
- Size: 227.0 kB
- Tags: CPython 3.7m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 18f3882091e387dc8d4e5adf11bdae6c8d3bcb93dfc07d02ab803c43c3b7feb5 |
|
MD5 | b71e247f523a1da77a87132fa5c5a85e |
|
BLAKE2b-256 | 5b67223e53eba3a4e17fd2758320384e4dcd0d93b0fc16126a4aad02606fe8f7 |
File details
Details for the file ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_ppc64le.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_ppc64le.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f20892a3faf7e5514138ca1d1a1beaa43ce60e8aa8c525b878dca7246bb4d1a |
|
MD5 | 75ffb7688c4c1a0aabba956047e86d8c |
|
BLAKE2b-256 | 0d9f9e8eacd63ca48d96a5decebf037bd67f7522e5eec3f22c0058f547005af3 |
File details
Details for the file ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_aarch64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_aarch64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a168a86750359a352db1c24c0044d33f1ace825cd1d798768a2cb6cfea7ff45 |
|
MD5 | 676a4f549bf54c1b9e452e8b5b77f359 |
|
BLAKE2b-256 | 1008e6cd62605dcf8c86c03d4155e64c9e27780883d15eb3c6404f5563ce3512 |
File details
Details for the file ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_x86_64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8777c8362c1c243b3aa2b1ee0dd69876bbbc388ae4a0cf11e1af4e2f5f95476b |
|
MD5 | c3ca547ce1fe93f25626eb8fded0b764 |
|
BLAKE2b-256 | d7e86c0b878acf8e4fbe62f23f6f932a34aa0ddbfca83249d2211111cfa56eaa |
File details
Details for the file ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_i686.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_i686.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b6fffe390d5e05f32184df3f8c09b50d172101bc8177e0c4dd7e712c92286d3f |
|
MD5 | 507635767db104cbce030a104ae4f389 |
|
BLAKE2b-256 | cb5bc007d165981686eaa2b9581857720c3f7e52bb30550a81faf71cb071e262 |
File details
Details for the file ml_rapids-0.0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 312.7 kB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8cdbb2c397ccad21aba444f14f88b534cc58a2b7c07979f39e35aaead990e4c3 |
|
MD5 | 7f698ab8d1fc0b05de23f7a0b5b4c868 |
|
BLAKE2b-256 | d0b5a7a4f79c74712a876643594dbdad03a1df1005f8cf0b2d61d02bb4d4c705 |
File details
Details for the file ml_rapids-0.0.1.7-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 287.4 kB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3d31ab8c757e63b7bc5ba676843fe2da4de2c0e0f47c0595f265708aaaeb53c3 |
|
MD5 | d44557486a74e5cce71930333cd49865 |
|
BLAKE2b-256 | d6bf1f3fc52f8c1bdefc996234beb89f8318c2161fcd394f3059a10f4907d783 |
File details
Details for the file ml_rapids-0.0.1.7-cp36-cp36m-win32.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp36-cp36m-win32.whl
- Upload date:
- Size: 227.0 kB
- Tags: CPython 3.6m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f57ecfa1b8c0221aba958aec22f754754255d580aebc0adfeb92aec83f80399 |
|
MD5 | a80b3fb8460dd760b62dfd4a71edcfd3 |
|
BLAKE2b-256 | c5ed8f2ab78917a3e58ce184e2165e54bc0076bdb551dd360fa89f715a4fa4c1 |
File details
Details for the file ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_ppc64le.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_ppc64le.whl
- Upload date:
- Size: 4.0 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a9734205ef5d9fa0840d470df60b321f2f3d0c996459ef93bd9f3e8a6e747bd1 |
|
MD5 | 4573a2a1d4dd8e428c5866308ffff8ee |
|
BLAKE2b-256 | dec8f54a1097e94f2ed4960f86160bb4c5534222a7cf3273f9d38eb6217d8f59 |
File details
Details for the file ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_aarch64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_aarch64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 073c80eff8a7f1fa3b0e5ef099b81f053e78d5daf32646908ceed8eb6c429df6 |
|
MD5 | 994d3cf3cde5c60595b6bdba83fdc42b |
|
BLAKE2b-256 | 8c0f1dc052e13fcdbe85052795367db7f0f91bc313f652607be94798697743da |
File details
Details for the file ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_x86_64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_x86_64.whl
- Upload date:
- Size: 3.9 MB
- Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 820ef867b24c8ae9a1c553389a6dc3672dae5d2d939b0d42b55daa194153c045 |
|
MD5 | 61558fbd8bb6208ab7d3d3b0acb7d8fd |
|
BLAKE2b-256 | 451f6243ca25e96eb03c3e4a5ea47e18194d2cf2e460fbf4d44715bd673930cb |
File details
Details for the file ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_i686.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_i686.whl
- Upload date:
- Size: 3.8 MB
- Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c6a59492b10c4c662d9a647a8b8d6fd75ba30c57890087a229fb80243b6d3314 |
|
MD5 | f7a925a5d858e0b1f3b02ca46a425e2d |
|
BLAKE2b-256 | e4ba28688526a7c0a534c81a3eb00a92c683991273385584231440995bbd37cf |
File details
Details for the file ml_rapids-0.0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: ml_rapids-0.0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 312.7 kB
- Tags: CPython 3.6m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 426b0501cecd9d02a1c133e9edd26aafd4065d26d5613d1fdd4661bc3a9dcd27 |
|
MD5 | 5d9c71923000a4805962729b672ba7ab |
|
BLAKE2b-256 | 9915550a40a4692107df348c2778640eb0e1e6338439c098b5040354a33810db |