Skip to main content

Incremental learning written in C++ exposed in Python

Project description

ml-rapids: Incremental learning written in C++ exposed in Python

ml-rapids implements incremental learning methods in C++ and exposes them via SWIG in Python. Installation can be achieved simply with pip install ml_rapids. You can test your installation with running Python:

# testing ml-rapids
import ml_rapids
ml_rapids.test()

Further documentation is available here:

Implemented incremental learning methods

  • Classification
    • Majority Class
    • Naive Bayes
    • Logistic Regression
    • Perceptron
    • VFDT (Very Fast Decision Trees) aka Hoeffding Trees
    • HAT (Hoeffding Adaptive Trees)
    • Bagging
  • Regression
    • /

All the methods implement sklearn incremantal learner interface (includes fit, partial_fit and predict methods).

Future plans

Streaming random forest on top of Hoeffding trees will be implemented. The library will be exposed via also via npm packages.

Development

Development notes can be read here.

Python deployment notes can be read here.

Acknowledgements

ml-rapids is developed by AILab at Jozef Stefan Institute.

This repository is based strongly on streamDM-cpp.

Project has received funding from European Union's Horizon 2020 Research and Innovation Programme under the Grant Agreement 776115 (PerceptiveSentinel).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml-rapids-0.0.1.7.tar.gz (156.3 kB view details)

Uploaded Source

Built Distributions

ml_rapids-0.0.1.7-cp38-cp38-win_amd64.whl (288.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

ml_rapids-0.0.1.7-cp38-cp38-win32.whl (226.9 kB view details)

Uploaded CPython 3.8 Windows x86

ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_i686.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

ml_rapids-0.0.1.7-cp38-cp38-macosx_10_9_x86_64.whl (313.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ml_rapids-0.0.1.7-cp37-cp37m-win_amd64.whl (287.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

ml_rapids-0.0.1.7-cp37-cp37m-win32.whl (227.0 kB view details)

Uploaded CPython 3.7m Windows x86

ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_i686.whl (3.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

ml_rapids-0.0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl (312.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

ml_rapids-0.0.1.7-cp36-cp36m-win_amd64.whl (287.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

ml_rapids-0.0.1.7-cp36-cp36m-win32.whl (227.0 kB view details)

Uploaded CPython 3.6m Windows x86

ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_i686.whl (3.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

ml_rapids-0.0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl (312.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file ml-rapids-0.0.1.7.tar.gz.

File metadata

  • Download URL: ml-rapids-0.0.1.7.tar.gz
  • Upload date:
  • Size: 156.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for ml-rapids-0.0.1.7.tar.gz
Algorithm Hash digest
SHA256 df6a46d84db4237cbff31079b8150e8c36c41d43b1093de3a874c75c6b18d75b
MD5 f1176ca191dc269a3fe80db97505d3ed
BLAKE2b-256 838af55dbb2e47b915172c05060a8a321cca066cc41455db6b6386eea26b3ac7

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 288.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for ml_rapids-0.0.1.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cc46c818c019f8561ca9249dd5fdb2b13353f6cfa20bebc1323ca5fa7ae52c06
MD5 2d7e2c45509e913cded71bbd4085edb5
BLAKE2b-256 a3272971ae449a527098ce058cf06d7a9f2407760c53bb360c77ce2285832ef1

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 226.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for ml_rapids-0.0.1.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fe3650aa4bc336611cebad43cf0a73b8f733807ce4d2eb6d6149308b58b74237
MD5 fd76eb2edfa002ec8f839e680a97204d
BLAKE2b-256 d028c4a061ab07e525680f7fd58ea735ae08bae4590612e890fe686368c59d6e

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.8

File hashes

Hashes for ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3dca37941d25b89d01ce5a8492e5d842d92ff4d6e4b0e5fbf39ad7373ff801c3
MD5 db2dd732dcd2409740c89b3b47fd36df
BLAKE2b-256 5c3f822f9bdd63443cc8fa2b25be2f150be43f79de8eced9e4cf1a1b35209da0

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for ml_rapids-0.0.1.7-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb307cabe0fb750fbcfc6c6d29a2c52127f68f59a2240c4f7f11162f6512e5e9
MD5 68ceb4e9c75a27f803861c044ead5f24
BLAKE2b-256 eb35fa475dcbf1d98a7492d4e30303b600fa7bdf227df9fc84683e06ef40b764

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7c3541b0dd0c57605da9dc67714b87d73196b483a51085361ab96f1481d6a85f
MD5 ee9d03fbc11bc5d79653feedb9cfb0ab
BLAKE2b-256 677f82360d4f63b3f3f511add8dbb789916337dd2ebc48f985fe1751ccb7f4f8

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for ml_rapids-0.0.1.7-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1011d9a07fdce0fc4c0f397b1a2f5effaa553e60fa5bf7123c8db10161b038ef
MD5 d5673339f97e184b2e38636fb323f770
BLAKE2b-256 12df8342b66ae126f4346dc87cb895889675e6c0c733fb01fee5d82d1c35f896

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 313.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for ml_rapids-0.0.1.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8878113a14fa605b53e0619c15a8ddfe075335948cb3b252fedc761ae7f555c1
MD5 7d80a43d2825f0eb3bd01274b9f2e5cb
BLAKE2b-256 b42347dff0bc2713299f893fc0fdf2417b8f30e4b7611d67a0678d7ce9825703

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 287.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for ml_rapids-0.0.1.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fb3a456ed076bfa508aa1296dcf36bccdb855bbfa2074b09cf632d13f9816757
MD5 7b8cba6bf5a66b586fb69dc3db3fb1a4
BLAKE2b-256 58dabe72c96f86be9f59247358d1bd58bb82b1d0538489768badd2ee99b8c1aa

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 227.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for ml_rapids-0.0.1.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 18f3882091e387dc8d4e5adf11bdae6c8d3bcb93dfc07d02ab803c43c3b7feb5
MD5 b71e247f523a1da77a87132fa5c5a85e
BLAKE2b-256 5b67223e53eba3a4e17fd2758320384e4dcd0d93b0fc16126a4aad02606fe8f7

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.8

File hashes

Hashes for ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9f20892a3faf7e5514138ca1d1a1beaa43ce60e8aa8c525b878dca7246bb4d1a
MD5 75ffb7688c4c1a0aabba956047e86d8c
BLAKE2b-256 0d9f9e8eacd63ca48d96a5decebf037bd67f7522e5eec3f22c0058f547005af3

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for ml_rapids-0.0.1.7-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a168a86750359a352db1c24c0044d33f1ace825cd1d798768a2cb6cfea7ff45
MD5 676a4f549bf54c1b9e452e8b5b77f359
BLAKE2b-256 1008e6cd62605dcf8c86c03d4155e64c9e27780883d15eb3c6404f5563ce3512

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8777c8362c1c243b3aa2b1ee0dd69876bbbc388ae4a0cf11e1af4e2f5f95476b
MD5 c3ca547ce1fe93f25626eb8fded0b764
BLAKE2b-256 d7e86c0b878acf8e4fbe62f23f6f932a34aa0ddbfca83249d2211111cfa56eaa

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for ml_rapids-0.0.1.7-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b6fffe390d5e05f32184df3f8c09b50d172101bc8177e0c4dd7e712c92286d3f
MD5 507635767db104cbce030a104ae4f389
BLAKE2b-256 cb5bc007d165981686eaa2b9581857720c3f7e52bb30550a81faf71cb071e262

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 312.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for ml_rapids-0.0.1.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8cdbb2c397ccad21aba444f14f88b534cc58a2b7c07979f39e35aaead990e4c3
MD5 7f698ab8d1fc0b05de23f7a0b5b4c868
BLAKE2b-256 d0b5a7a4f79c74712a876643594dbdad03a1df1005f8cf0b2d61d02bb4d4c705

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 287.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for ml_rapids-0.0.1.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3d31ab8c757e63b7bc5ba676843fe2da4de2c0e0f47c0595f265708aaaeb53c3
MD5 d44557486a74e5cce71930333cd49865
BLAKE2b-256 d6bf1f3fc52f8c1bdefc996234beb89f8318c2161fcd394f3059a10f4907d783

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp36-cp36m-win32.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 227.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.0

File hashes

Hashes for ml_rapids-0.0.1.7-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 4f57ecfa1b8c0221aba958aec22f754754255d580aebc0adfeb92aec83f80399
MD5 a80b3fb8460dd760b62dfd4a71edcfd3
BLAKE2b-256 c5ed8f2ab78917a3e58ce184e2165e54bc0076bdb551dd360fa89f715a4fa4c1

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 4.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.8

File hashes

Hashes for ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a9734205ef5d9fa0840d470df60b321f2f3d0c996459ef93bd9f3e8a6e747bd1
MD5 4573a2a1d4dd8e428c5866308ffff8ee
BLAKE2b-256 dec8f54a1097e94f2ed4960f86160bb4c5534222a7cf3273f9d38eb6217d8f59

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for ml_rapids-0.0.1.7-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 073c80eff8a7f1fa3b0e5ef099b81f053e78d5daf32646908ceed8eb6c429df6
MD5 994d3cf3cde5c60595b6bdba83fdc42b
BLAKE2b-256 8c0f1dc052e13fcdbe85052795367db7f0f91bc313f652607be94798697743da

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 820ef867b24c8ae9a1c553389a6dc3672dae5d2d939b0d42b55daa194153c045
MD5 61558fbd8bb6208ab7d3d3b0acb7d8fd
BLAKE2b-256 451f6243ca25e96eb03c3e4a5ea47e18194d2cf2e460fbf4d44715bd673930cb

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for ml_rapids-0.0.1.7-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c6a59492b10c4c662d9a647a8b8d6fd75ba30c57890087a229fb80243b6d3314
MD5 f7a925a5d858e0b1f3b02ca46a425e2d
BLAKE2b-256 e4ba28688526a7c0a534c81a3eb00a92c683991273385584231440995bbd37cf

See more details on using hashes here.

File details

Details for the file ml_rapids-0.0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_rapids-0.0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 312.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.4

File hashes

Hashes for ml_rapids-0.0.1.7-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 426b0501cecd9d02a1c133e9edd26aafd4065d26d5613d1fdd4661bc3a9dcd27
MD5 5d9c71923000a4805962729b672ba7ab
BLAKE2b-256 9915550a40a4692107df348c2778640eb0e1e6338439c098b5040354a33810db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page