Generating evaluating metrics reports for machine learning models in two lines of code.
Project description
Machine Learning Report Toolkit
Generating evaluating metrics reports for machine learning models in two lines of code.
from ml_report import MLReport
report = MLReport(y_true_label, y_pred_label, y_pred_prob, class_names)
report.run(results_path="results")
This will generate a classifier report, containing the following information:
- A classification report with precision, recall and F1.
- A visualization of the precision and recall curves as a function of the threshold for each class.
- A confusion matrix.
- A
.csv
file with precision, recall, at different thresholds. - A
.csv
file with predictions scores for each class for each sample.
All this information is saved in the results
folder under different filenames, containing both
images, .csv
files, and a .txt
file with the classification report.
precision recall f1-score support
alt.atheism 0.81 0.87 0.84 159
comp.graphics 0.65 0.81 0.72 194
comp.os.ms-windows.misc 0.81 0.82 0.81 197
comp.sys.ibm.pc.hardware 0.75 0.75 0.75 196
comp.sys.mac.hardware 0.86 0.78 0.82 193
comp.windows.x 0.81 0.81 0.81 198
misc.forsale 0.74 0.86 0.80 195
rec.autos 0.92 0.90 0.91 198
rec.motorcycles 0.95 0.96 0.95 199
rec.sport.baseball 0.94 0.92 0.93 198
rec.sport.hockey 0.96 0.97 0.96 200
sci.crypt 0.95 0.89 0.92 198
sci.electronics 0.85 0.81 0.83 196
sci.med 0.90 0.90 0.90 198
sci.space 0.94 0.91 0.93 197
soc.religion.christian 0.90 0.92 0.91 199
talk.politics.guns 0.86 0.88 0.87 182
talk.politics.mideast 0.97 0.95 0.96 188
talk.politics.misc 0.86 0.82 0.84 155
talk.religion.misc 0.82 0.57 0.67 126
accuracy 0.86 3766
macro avg 0.86 0.86 0.86 3766
weighted avg 0.86 0.86 0.86 3766
Example: running ML-Report-Toolkit on cross-fold classification
Install the package and dependencies:
pip install ml-report-kit
pip install scikit-learn
Run the following code:
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import StratifiedKFold
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from ml_report import MLReport
dataset = fetch_20newsgroups(subset='all', shuffle=True, random_state=42)
k_folds = StratifiedKFold(n_splits=3, shuffle=True, random_state=42)
folds = {}
for fold_nr, (train_index, test_index) in enumerate(k_folds.split(dataset.data, dataset.target)):
x_train, x_test = np.array(dataset.data)[train_index], np.array(dataset.data)[test_index]
y_train, y_test = np.array(dataset.target)[train_index], np.array(dataset.target)[test_index]
folds[fold_nr] = {"x_train": x_train, "x_test": x_test, "y_train": y_train, "y_test": y_test}
for fold_nr in folds.keys():
clf = Pipeline([('tfidf', TfidfVectorizer()), ('clf', LogisticRegression(class_weight='balanced'))])
clf.fit(folds[fold_nr]["x_train"], folds[fold_nr]["y_train"])
y_pred = clf.predict(folds[fold_nr]["x_test"])
y_pred_prob = clf.predict_proba(folds[fold_nr]["x_test"])
y_true_label = [dataset.target_names[sample] for sample in folds[fold_nr]["y_test"]]
y_pred_label = [dataset.target_names[sample] for sample in y_pred]
report = MLReport(y_true_label, y_pred_label, y_pred_prob, dataset.target_names)
report.generate_report()
This will generate, for each fold, the reports and metrics mentioned above, in the reports
folder.
License
Apache License 2.0
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ml_report_kit-0.1.2.tar.gz
(9.9 kB
view hashes)
Built Distribution
Close
Hashes for ml_report_kit-0.1.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd975321bc42b61eb7c89e7a7a27d2431b866bb7d9fd90104e55278a44e0f2f5 |
|
MD5 | 919669e495c25e32a1650190bfded047 |
|
BLAKE2b-256 | 91bdc49eb602bcc5a3e56d23190d74446198bb76a80700538e83603a0f82bd2d |