Skip to main content

A library for machine learning utilities

Project description

Model Tooling library

Build Status codecov Python 3 CodeFactor Code style: black

Installation

Use pip to install: pip install ml-tooling Or use conda conda install -c conda-forge ml_tooling

Test

We use tox for managing build and test environments, to install tox run: pip install tox And to run tests: tox -e py

Example usage

Define a class using ModelData and implement the two required methods. Here we simply implement a linear regression on the Boston dataset using sklearn.datasets

from sklearn.datasets import fetch_california_housing
from sklearn.linear_model import LinearRegression

from ml_tooling import Model
from ml_tooling.data import Dataset

# Define a new data class
class CaliforniaData(Dataset):
    def load_prediction_data(self, idx):
        x, _ = fetch_california_housing(return_X_y=True)
        return x[idx] # Return given observation

    def load_training_data(self):
        return fetch_california_housing(return_X_y=True)

# Instantiate a model with an estimator
linear_california = Model(LinearRegression())

# Instantiate the data
data = CaliforniaData()

# Split training and test data
data.create_train_test()

# Score the estimator yielding a Result object
result = linear_california.score_estimator(data)

# Visualize the result
result.plot.prediction_error()

print(result)
<Result LinearRegression: {'r2': 0.68}>

Links

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml_tooling-0.12.1.tar.gz (41.1 kB view details)

Uploaded Source

Built Distribution

ml_tooling-0.12.1-py3-none-any.whl (69.4 kB view details)

Uploaded Python 3

File details

Details for the file ml_tooling-0.12.1.tar.gz.

File metadata

  • Download URL: ml_tooling-0.12.1.tar.gz
  • Upload date:
  • Size: 41.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.23.0

File hashes

Hashes for ml_tooling-0.12.1.tar.gz
Algorithm Hash digest
SHA256 d84fab1f5dc36332986e1f16b1d0b29ecb1a935e9beb8e773e5224e3aa84fa7c
MD5 52addd120ad7e0650fda4ed2dc3a016b
BLAKE2b-256 74dd561aa9e9b2f27bdec4961bef1203688d61b202e861132acd850b88434421

See more details on using hashes here.

File details

Details for the file ml_tooling-0.12.1-py3-none-any.whl.

File metadata

File hashes

Hashes for ml_tooling-0.12.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0b82b2dc8fda470b5445d242da29a671f1c9f3df20574b122bb1bc51bc02f893
MD5 c6ee7264f78ee360d7a67b2964ce6db2
BLAKE2b-256 32a62e173235a535d1fd26e6f444f2ca69a363e426d13b446a68e831c9714db8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page