Skip to main content

A library for machine learning utilities

Project description

Model Tooling library

Build Status Coverage Status Python 3 Updates

Installation

Use pip to install: pip install ml-tooling

Contents

  • Transformers

    • A library of transformers for use with Scikit-learn pipelines
  • Model base classes

    • Production baseclasses for subclassing - guarantees interface for use in API
  • Plotting functions

    • Functions for producing nice, commonly used plots such as roc_curves and confusion matrices

BaseClassModel

A base Class for defining your model. Your subclass must define two methods:

  • get_prediction_data()

    Function that, given an input, fetches corresponding features. Used for predicting an unseen observation

  • get_training_data()

    Function that retrieves all training data. Used for training and evaluating the model

Example usage

Define a class using BaseClassModel and implement the two required methods. Here we simply implement a linear regression on the Boston dataset using sklearn.datasets

from ml_tooling import BaseClassModel
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression, Ridge, LassoLars

# Define a new class

class BostonModel(BaseClassModel):
    def get_prediction_data(self, idx):
        x, _ = load_boston(return_X_y=True)
        return x[idx] # Return given observation

    def get_training_data(self):
        return load_boston(return_X_y=True)

# Use our new class to implement a given model - any sklearn compatible estimator
linear_boston = BostonModel(LinearRegression())

results = linear_boston.score_model()

# Visualize results
results.plot.residuals()
results.plot.prediction_error()

# Save our model
linear_boston.save_model()

# Recreate model
BostonModel.load_model('.')

# Train Different models and get the best performing
models_to_try = [LinearRegression(), Ridge(), LassoLars()]

# best_model will be BostonModel instantiated with the highest scoring model. all_results is a list of all results 
best_model, alL_results = BostonModel.test_models(models_to_try, metric='neg_mean_squared_error')
print(alL_results)

The BaseClass implements a number of useful methods

save_model()

Saves the model as a binary file

load_model()

Instantiates the class with a joblib pickled model

score_model()

Loads all training data and trains the model on it, using a train_test split. Returns a Result object containing all result parameters

train_model()

Loads all training data and trains the model on all data. Typically used as the last step when model tuning is complete

set_config({'CONFIG_KEY': 'VALUE'})

Set configuration options - existing configuration options can be seen using the .config property

make_prediction(*args)

Makes a prediction given an input. For example a customer number. Passed to the implemented get_prediction_data() method and calls .predict() on the estimator

test_models([model1, model2], metric='accuracy')

Runs score_model() on each model, saving the result. Returns the best model as well as a list of all results

setup_model()

To be implemented by the user - setup_model is a classmethod which loads up an untrained model. Typically this would setup a pipeline and the selected model for easy training

Returning to our previous example of the BostonModel, let us implement a setup_model method

from ml_tooling import BaseClassModel
from sklearn.datasets import load_boston
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline

class BostonModel(BaseClassModel):
    def get_prediction_data(self, idx):
        x, _ = load_boston(return_X_y=True)
        return x[idx] # Return given observation

    def get_training_data(self):
        return load_boston(return_X_y=True)

    @classmethod
    def setup_model(cls):
        pipeline = Pipeline([
        ('scaler', StandardScaler()),
        ('clf', LinearRegression())
        ])
        return cls(pipeline)

Given this extra setup, it becomes easy to load the untrained model to train it:

model = BostonModel.setup_model()
model.train_model()

Visualizing results

When a model is trained, it returns a Result object. That object has number of visualization options depending on the type of model:

Classifiers

  • roc_curve()
  • confusion_matrix()
  • feature_importance()
  • lift_curve()

Regressors

  • prediction_error()
  • residuals()
  • feature_importance()

Transformers

The library also provides a number of transformers for working with DataFrames in a pipeline

Select

A column selector - Provide a list of columns to be passed on in the pipeline

Example

from ml_tooling.transformers import Select
import pandas as pd

df = pd.DataFrame({
    "id": [1, 2, 3, 4],
    "status": ["OK", "Error", "OK", "Error"],
    "sales": [2000, 3000, 4000, 5000] 

})

select = Select(['id', 'status'])
select.fit_transform(df)
Out[1]: 
   id status
0   1     OK
1   2  Error
2   3     OK
3   4  Error

FillNA

Fills NA values with instantiated value - passed to df.fillna()

Example

from ml_tooling.transformers import FillNA
import pandas as pd
import numpy as np

df = pd.DataFrame({
    "id": [1, 2, 3, 4],
    "status": ["OK", "Error", "OK", "Error"],
    "sales": [2000, 3000, 4000, np.nan] 

})

fill_na = FillNA(0)
fill_na.fit_transform(df)
Out[1]: 
   id status   sales
0   1     OK  2000.0
1   2  Error  3000.0
2   3     OK  4000.0
3   4  Error     0.0

ToCategorical

Performs one-hot encoding of categorical values through pd.Categorical. All categorical values not found in training data will be set to 0

Example

from ml_tooling.transformers import ToCategorical
import pandas as pd

df = pd.DataFrame({
    "status": ["OK", "Error", "OK", "Error"] 

})

onehot = ToCategorical()
onehot.fit_transform(df)
Out[1]: 
   status_Error  status_OK
0             0          1
1             1          0
2             0          1
3             1          0

FuncTransformer

Applies a given function to each column

Example

from ml_tooling.transformers import FuncTransformer
import pandas as pd

df = pd.DataFrame({
    "status": ["OK", "Error", "OK", "Error"]
})

uppercase = FuncTransformer(lambda x: x.str.upper())
uppercase.fit_transform(df)
Out[1]: 
  status
0     OK
1  ERROR
2     OK
3  ERROR

Binner

Bins numerical data into supplied bins

Example

from ml_tooling.transformers import Binner
import pandas as pd

df = pd.DataFrame({
    "sales": [1500, 2000, 2250, 7830]
})

binned = Binner(bins=[0, 1000, 2000, 8000])
binned.fit_transform(df)
Out[1]: 
          sales
0  (1000, 2000]
1  (1000, 2000]
2  (2000, 8000]
3  (2000, 8000]

Renamer

Renames columns to be equal to the passed list - must be in order

Example

from ml_tooling.transformers import Renamer
import pandas as pd

df = pd.DataFrame({
    "Total Sales": [1500, 2000, 2250, 7830]
})

rename = Renamer(['sales'])
rename.fit_transform(df)
Out[1]: 
   sales
0   1500
1   2000
2   2250
3   7830

DateEncoder

Adds year, month, day, week columns based on a datefield. Each date type can be toggled in the initializer

from ml_tooling.transformers import DateEncoder
import pandas as pd

df = pd.DataFrame({
    "sales_date": [pd.to_datetime('2018-01-01'), pd.to_datetime('2018-02-02')]
})

dates = DateEncoder(week=False)
dates.fit_transform(df)
Out[1]: 
   sales_date_day  sales_date_month  sales_date_year
0               1                 1             2018
1               2                 2             2018

FreqFeature

Converts a column into a normalized frequencies

from ml_tooling.transformers import FreqFeature
import pandas as pd

df = pd.DataFrame({
    "sales_category": ['Sale', 'Sale', 'Not Sale']
})

freq = FreqFeature()
freq.fit_transform(df)
Out[1]: 
   sales_category
0        0.666667
1        0.666667
2        0.333333

DFFeatureUnion

A FeatureUnion equivalent for DataFrames. Concatenates the result of multiple transformers

from ml_tooling.transformers import FreqFeature, Binner, Select, DFFeatureUnion
from sklearn.pipeline import Pipeline
import pandas as pd


df = pd.DataFrame({
    "sales_category": ['Sale', 'Sale', 'Not Sale', 'Not Sale'],
    "sales": [1500, 2000, 2250, 7830]
})


freq = Pipeline([
    ('select', Select('sales_category')), 
    ('freq', FreqFeature())
])

binned = Pipeline([
    ('select', Select('sales')), 
    ('bin', Binner(bins=[0, 1000, 2000, 8000]))
    ])


union = DFFeatureUnion([
    ('sales_category', freq), 
    ('sales', binned)
])
union.fit_transform(df)
Out[1]: 
   sales_category         sales
0             0.5  (1000, 2000]
1             0.5  (1000, 2000]
2             0.5  (2000, 8000]
3             0.5  (2000, 8000]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml_tooling-0.1.3.tar.gz (18.3 kB view hashes)

Uploaded Source

Built Distribution

ml_tooling-0.1.3-py3-none-any.whl (29.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page