A safe, transparent way to share and deploy scikit-learn models.
Project description
ml2json
Export scikit-learn model files to JSON for sharing or deploying predictive models with peace of mind.
This is the continuation of the work hosted at OlivierBeq/sklearn-json.
Why ml2json?
Other methods for exporting scikit-learn models require Pickle or Joblib (based on Pickle).
- Serializing model files with Pickle provides a simple attack vector for malicious users - they give an attacker the ability to execute arbitrary code wherever the file is deserialized. For an example see: https://www.smartfile.com/blog/python-pickle-security-problems-and-solutions/.
- Internal designs of Pickle and Joblib files make the binary files not mandatorily supported across Python versions.
ml2json is a safe and transparent solution for exporting scikit-learn model files to text files both machine and human readable.
Safe
Export model files to 100% JSON which cannot execute code on deserialization.
Transparent
Model files are serialized in JSON (i.e., not binary), so you have the ability to see exactly what's inside.
Getting Started
ml2json makes exporting model files to JSON simple.
Install
pip install ml2json
To install other all dependencies (e.g. XGBoost, HDBSCAN), use:
pip install ml2json[full]
Example Usage
import ml2json
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=0).fit(X, y)
ml2json.to_json(model, file_name)
deserialized_model = ml2json.from_json(file_name)
deserialized_model.predict(X)
Features
The list of supported models is rapidly growing. In addition of the support for scikit-learn models, ml2json supports the following libraries:
- scikit-learn-extra
- XGBoost
- LightGBM
- CatBoost
- Imbalanced-learn
- kmodes
- HDBSCAN
- UMAP
- PyNNDescent
- Prince
- MlChemAD
- openTSNE
ml2json requires scikit-learn >= 1.2.2, <=1.4.0.
Supported scikit-learn Models
Library | Category | Class | Supported? |
---|---|---|---|
Scikit-Learn | Clustering | cluster.AffinityPropagation | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.AgglomerativeClustering | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.Birch | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.DBSCAN | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.FeatureAgglomeration | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.KMeans | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.BisectingKMeans | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.MiniBatchKMeans | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.MeanShift | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.OPTICS | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.SpectralClustering | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.SpectralBiclustering | :heavy_check_mark: |
Scikit-Learn | Clustering | cluster.SpectralCoclustering | :heavy_check_mark: |
Scikit-Learn | Cross decomposition | cross_decomposition.CCA | :heavy_check_mark: |
Scikit-Learn | Cross decomposition | cross_decomposition.PLSCanonical | :heavy_check_mark: |
Scikit-Learn | Cross decomposition | cross_decomposition.PLSRegression | :heavy_check_mark: |
Scikit-Learn | Cross decomposition | cross_decomposition.PLSSVD | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.DictionaryLearning | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.FactorAnalysis | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.FastICA | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.IncrementalPCA | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.KernelPCA | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.LatentDirichletAllocation | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.MiniBatchDictionaryLearning | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.MiniBatchSparsePCA | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.NMF | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.MiniBatchNMF | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.PCA | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.SparsePCA | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.SparseCoder | :heavy_check_mark: |
Scikit-Learn | Decomposition | decomposition.TruncatedSVD | :heavy_check_mark: |
Scikit-Learn | Discriminant Analysis | discriminant_analysis.LinearDiscriminantAnalysis | :heavy_check_mark: |
Scikit-Learn | Discriminant Analysis | discriminant_analysis.QuadraticDiscriminantAnalysis | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.AdaBoostClassifier | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.AdaBoostRegressor | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.BaggingClassifier | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.BaggingRegressor | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.ExtraTreesClassifier | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.ExtraTreesRegressor | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.GradientBoostingClassifier | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.GradientBoostingRegressor | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.IsolationForest | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.RandomForestClassifier | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.RandomForestRegressor | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.RandomTreesEmbedding | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.StackingClassifier | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.StackingRegressor | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.VotingClassifier | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.VotingRegressor | :heavy_check_mark: |
Scikit-Learn | Ensemble Methods | ensemble.HistGradientBoostingRegressor | :x: |
Scikit-Learn | Ensemble Methods | ensemble.HistGradientBoostingClassifier | :x: |
Scikit-Learn | Feature Extraction | feature_extraction.DictVectorizer | :heavy_check_mark: |
Scikit-Learn | Feature Extraction | feature_extraction.FeatureHasher | :x: |
Scikit-Learn | Feature Extraction | feature_extraction.image.PatchExtractor | :x: |
Scikit-Learn | Feature Extraction | feature_extraction.text.CountVectorizer | :x: |
Scikit-Learn | Feature Extraction | feature_extraction.text.HashingVectorizer | :x: |
Scikit-Learn | Feature Extraction | feature_extraction.text.TfidfTransformer | :x: |
Scikit-Learn | Feature Extraction | feature_extraction.text.TfidfVectorizer | :x: |
Scikit-Learn | Feature Selection | feature_selection.GenericUnivariateSelect | :x: |
Scikit-Learn | Feature Selection | feature_selection.SelectPercentile | :x: |
Scikit-Learn | Feature Selection | feature_selection.SelectKBest | :x: |
Scikit-Learn | Feature Selection | feature_selection.SelectFpr | :x: |
Scikit-Learn | Feature Selection | feature_selection.SelectFdr | :x: |
Scikit-Learn | Feature Selection | feature_selection.SelectFromModel | :x: |
Scikit-Learn | Feature Selection | feature_selection.SelectFwe | :x: |
Scikit-Learn | Feature Selection | feature_selection.SequentialFeatureSelector | :x: |
Scikit-Learn | Feature Selection | feature_selection.RFE | :x: |
Scikit-Learn | Feature Selection | feature_selection.RFECV | :x: |
Scikit-Learn | Feature Selection | feature_selection.VarianceThreshold | :x: |
Scikit-Learn | Gaussian Processes | gaussian_process.GaussianProcessClassifier | :x: |
Scikit-Learn | Gaussian Processes | gaussian_process.GaussianProcessRegressor | :x: |
Scikit-Learn | Impute | impute.SimpleImputer | :x: |
Scikit-Learn | Impute | impute.IterativeImputer | :x: |
Scikit-Learn | Impute | impute.MissingIndicator | :x: |
Scikit-Learn | Impute | impute.KNNImputer | :x: |
Scikit-Learn | Isotonic regression | isotonic.IsotonicRegression | :x: |
Scikit-Learn | Kernel Approximation | kernel_approximation.AdditiveChi2Sampler | :x: |
Scikit-Learn | Kernel Approximation | kernel_approximation.Nystroem | :x: |
Scikit-Learn | Kernel Approximation | kernel_approximation.PolynomialCountSketch | :x: |
Scikit-Learn | Kernel Approximation | kernel_approximation.RBFSampler | :x: |
Scikit-Learn | Kernel Approximation | kernel_approximation.SkewedChi2Sampler | :x: |
Scikit-Learn | Kernel Ridge Regression | kernel_ridge.KernelRidge | :x: |
Scikit-Learn | Linear Models | linear_model.LogisticRegression | :heavy_check_mark: |
Scikit-Learn | Linear Models | linear_model.LogisticRegressionCV | :x: |
Scikit-Learn | Linear Models | linear_model.PassiveAggressiveClassifier | :x: |
Scikit-Learn | Linear Models | linear_model.Perceptron | :heavy_check_mark: |
Scikit-Learn | Linear Models | linear_model.RidgeClassifier | :x: |
Scikit-Learn | Linear Models | linear_model.RidgeClassifierCV | :x: |
Scikit-Learn | Linear Models | linear_model.SGDClassifier | :x: |
Scikit-Learn | Linear Models | linear_model.SGDOneClassSVM | :x: |
Scikit-Learn | Linear Models | linear_model.LinearRegression | :heavy_check_mark: |
Scikit-Learn | Linear Models | linear_model.Ridge | :heavy_check_mark: |
Scikit-Learn | Linear Models | linear_model.RidgeCV | :x: |
Scikit-Learn | Linear Models | linear_model.SGDRegressor | :x: |
Scikit-Learn | Linear Models | linear_model.ElasticNet | :heavy_check_mark: |
Scikit-Learn | Linear Models | linear_model.ElasticNetCV | :x: |
Scikit-Learn | Linear Models | linear_model.Lars | :x: |
Scikit-Learn | Linear Models | linear_model.LarsCV | :x: |
Scikit-Learn | Linear Models | linear_model.Lasso | :heavy_check_mark: |
Scikit-Learn | Linear Models | linear_model.LassoCV | :x: |
Scikit-Learn | Linear Models | linear_model.LassoLars | :x: |
Scikit-Learn | Linear Models | linear_model.LassoLarsCV | :x: |
Scikit-Learn | Linear Models | linear_model.LassoLarsIC | :x: |
Scikit-Learn | Linear Models | linear_model.OrthogonalMatchingPursuit | :x: |
Scikit-Learn | Linear Models | linear_model.OrthogonalMatchingPursuitCV | :x: |
Scikit-Learn | Linear Models | linear_model.ARDRegression | :x: |
Scikit-Learn | Linear Models | linear_model.BayesianRidge | :x: |
Scikit-Learn | Linear Models | linear_model.MultiTaskElasticNet | :x: |
Scikit-Learn | Linear Models | linear_model.MultiTaskElasticNetCV | :x: |
Scikit-Learn | Linear Models | linear_model.MultiTaskLasso | :x: |
Scikit-Learn | Linear Models | linear_model.MultiTaskLassoCV | :x: |
Scikit-Learn | Linear Models | linear_model.HuberRegressor | :x: |
Scikit-Learn | Linear Models | linear_model.QuantileRegressor | :x: |
Scikit-Learn | Linear Models | linear_model.RANSACRegressor | :x: |
Scikit-Learn | Linear Models | linear_model.TheilSenRegressor | :x: |
Scikit-Learn | Linear Models | linear_model.PoissonRegressor | :x: |
Scikit-Learn | Linear Models | linear_model.TweedieRegressor | :x: |
Scikit-Learn | Linear Models | linear_model.GammaRegressor | :x: |
Scikit-Learn | Linear Models | linear_model.PassiveAggressiveRegressor | :x: |
Scikit-Learn | Manifold Learning | manifold.Isomap | :heavy_check_mark: |
Scikit-Learn | Manifold Learning | manifold.LocallyLinearEmbedding | :heavy_check_mark: |
Scikit-Learn | Manifold Learning | manifold.MDS | :heavy_check_mark: |
Scikit-Learn | Manifold Learning | manifold.SpectralEmbedding | :heavy_check_mark: |
Scikit-Learn | Manifold Learning | manifold.TSNE | :heavy_check_mark: |
Scikit-Learn | Gaussian Mixture Models | mixture.BayesianGaussianMixture | :x: |
Scikit-Learn | Gaussian Mixture Models | mixture.GaussianMixture | :x: |
Scikit-Learn | Model Selection | model_selection.GroupKFold | :x: |
Scikit-Learn | Model Selection | model_selection.GroupShuffleSplit | :x: |
Scikit-Learn | Model Selection | model_selection.KFold | :x: |
Scikit-Learn | Model Selection | model_selection.LeaveOneGroupOut | :x: |
Scikit-Learn | Model Selection | model_selection.LeavePGroupsOut | :x: |
Scikit-Learn | Model Selection | model_selection.LeaveOneOut | :x: |
Scikit-Learn | Model Selection | model_selection.LeavePOut | :x: |
Scikit-Learn | Model Selection | model_selection.PredefinedSplit | :x: |
Scikit-Learn | Model Selection | model_selection.RepeatedKFold | :x: |
Scikit-Learn | Model Selection | model_selection.RepeatedStratifiedKFold | :x: |
Scikit-Learn | Model Selection | model_selection.ShuffleSplit | :x: |
Scikit-Learn | Model Selection | model_selection.StratifiedKFold | :x: |
Scikit-Learn | Model Selection | model_selection.StratifiedShuffleSplit | :x: |
Scikit-Learn | Model Selection | model_selection.StratifiedGroupKFold | :x: |
Scikit-Learn | Model Selection | model_selection.TimeSeriesSplit | :x: |
Scikit-Learn | Model Selection | model_selection.GridSearchCV | :x: |
Scikit-Learn | Model Selection | model_selection.HalvingGridSearchCV | :x: |
Scikit-Learn | Model Selection | model_selection.ParameterGrid | :x: |
Scikit-Learn | Model Selection | model_selection.ParameterSampler | :x: |
Scikit-Learn | Model Selection | model_selection.RandomizedSearchCV | :x: |
Scikit-Learn | Model Selection | model_selection.HalvingRandomSearchCV | :x: |
Scikit-Learn | Multiclass classification | multiclass.OneVsRestClassifier | :x: |
Scikit-Learn | Multiclass classification | multiclass.OneVsOneClassifier | :x: |
Scikit-Learn | Multiclass classification | multiclass.OutputCodeClassifier | :x: |
Scikit-Learn | Multioutput regression and classification | multioutput.ClassifierChain | :x: |
Scikit-Learn | Multioutput regression and classification | multioutput.MultiOutputRegressor | :x: |
Scikit-Learn | Multioutput regression and classification | multioutput.MultiOutputClassifier | :x: |
Scikit-Learn | Multioutput regression and classification | multioutput.RegressorChain | :x: |
Scikit-Learn | Naive Bayes | naive_bayes.BernoulliNB | :heavy_check_mark: |
Scikit-Learn | Naive Bayes | naive_bayes.CategoricalNB | :x: |
Scikit-Learn | Naive Bayes | naive_bayes.ComplementNB | :heavy_check_mark: |
Scikit-Learn | Naive Bayes | naive_bayes.GaussianNB | :heavy_check_mark: |
Scikit-Learn | Naive Bayes | naive_bayes.MultinomialNB | :heavy_check_mark: |
Scikit-Learn | Nearest Neighbors | neighbors.BallTree | :x: |
Scikit-Learn | Nearest Neighbors | neighbors.KDTree | :heavy_check_mark: |
Scikit-Learn | Nearest Neighbors | neighbors.KernelDensity | :heavy_check_mark: |
Scikit-Learn | Nearest Neighbors | neighbors.KNeighborsClassifier | :heavy_check_mark: |
Scikit-Learn | Nearest Neighbors | neighbors.KNeighborsRegressor | :heavy_check_mark: |
Scikit-Learn | Nearest Neighbors | neighbors.KNeighborsTransformer | :x: |
Scikit-Learn | Nearest Neighbors | neighbors.LocalOutlierFactor | :x: |
Scikit-Learn | Nearest Neighbors | neighbors.RadiusNeighborsClassifier | :x: |
Scikit-Learn | Nearest Neighbors | neighbors.RadiusNeighborsRegressor | :x: |
Scikit-Learn | Nearest Neighbors | neighbors.RadiusNeighborsTransformer | :x: |
Scikit-Learn | Nearest Neighbors | neighbors.NearestCentroid | :x: |
Scikit-Learn | Nearest Neighbors | neighbors.NearestNeighbors | :heavy_check_mark: |
Scikit-Learn | Nearest Neighbors | neighbors.NeighborhoodComponentsAnalysis | :x: |
Scikit-Learn | Neural network models | neural_network.BernoulliRBM | :x: |
Scikit-Learn | Neural network models | neural_network.MLPClassifier | :heavy_check_mark: |
Scikit-Learn | Neural network models | neural_network.MLPRegressor | :heavy_check_mark: |
Scikit-Learn | Pipeline | pipeline.FeatureUnion | :x: |
Scikit-Learn | Pipeline | pipeline.Pipeline | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.Binarizer | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.FunctionTransformer | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.KBinsDiscretizer | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.KernelCenterer | :heavy_check_mark: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.LabelBinarizer | :heavy_check_mark: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.LabelEncoder | :heavy_check_mark: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.MultiLabelBinarizer | :heavy_check_mark: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.MaxAbsScaler | :heavy_check_mark: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.MinMaxScaler | :heavy_check_mark: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.Normalizer | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.OneHotEncoder | :heavy_check_mark: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.OrdinalEncoder | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.PolynomialFeatures | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.PowerTransformer | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.QuantileTransformer | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.RobustScaler | :heavy_check_mark: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.SplineTransformer | :x: |
Scikit-Learn | Preprocessing and Normalization | preprocessing.StandardScaler | :heavy_check_mark: |
Scikit-Learn | Random projection | random_projection.GaussianRandomProjection | :x: |
Scikit-Learn | Random projection | random_projection.SparseRandomProjection | :x: |
Scikit-Learn | Semi-Supervised Learning | semi_supervised.LabelPropagation | :x: |
Scikit-Learn | Semi-Supervised Learning | semi_supervised.LabelSpreading | :x: |
Scikit-Learn | Semi-Supervised Learning | semi_supervised.SelfTrainingClassifier | :x: |
Scikit-Learn | Support Vector Machines | svm.LinearSVC | :x: |
Scikit-Learn | Support Vector Machines | svm.LinearSVR | :x: |
Scikit-Learn | Support Vector Machines | svm.NuSVC | :x: |
Scikit-Learn | Support Vector Machines | svm.NuSVR | :x: |
Scikit-Learn | Support Vector Machines | svm.OneClassSVM | :x: |
Scikit-Learn | Support Vector Machines | svm.SVC | :heavy_check_mark: |
Scikit-Learn | Support Vector Machines | svm.SVR | :heavy_check_mark: |
Scikit-Learn | Decision Trees | tree.DecisionTreeClassifier | :heavy_check_mark: |
Scikit-Learn | Decision Trees | tree.DecisionTreeRegressor | :heavy_check_mark: |
Scikit-Learn | Decision Trees | tree.ExtraTreeClassifier | :heavy_check_mark: |
Scikit-Learn | Decision Trees | tree.ExtraTreeRegressor | :heavy_check_mark: |
Imbalanced-Learn | Under-sampling | ClusterCentroids | :x: |
Imbalanced-Learn | Under-sampling | CondensedNearestNeighbour | :x: |
Imbalanced-Learn | Under-sampling | EditedNearestNeighbours | :x: |
Imbalanced-Learn | Under-sampling | RepeatedEditedNearestNeighbours | :x: |
Imbalanced-Learn | Under-sampling | AllKNN | :x: |
Imbalanced-Learn | Under-sampling | InstanceHardnessThreshold | :x: |
Imbalanced-Learn | Under-sampling | NearMiss | :x: |
Imbalanced-Learn | Under-sampling | NeighbourhoodCleaningRule | :x: |
Imbalanced-Learn | Under-sampling | OneSidedSelection | :x: |
Imbalanced-Learn | Under-sampling | RandomUnderSampler | :x: |
Imbalanced-Learn | Under-sampling | TomekLinks | :x: |
Imbalanced-Learn | Over-sampling | RandomOverSampler | :x: |
Imbalanced-Learn | Over-sampling | SMOTE | :x: |
Imbalanced-Learn | Over-sampling | SMOTENC | :x: |
Imbalanced-Learn | Over-sampling | SMOTEN | :x: |
Imbalanced-Learn | Over-sampling | ADASYN | :x: |
Imbalanced-Learn | Over-sampling | BorderlineSMOTE | :x: |
Imbalanced-Learn | Over-sampling | KMeansSMOTE | :x: |
Imbalanced-Learn | Over-sampling | SVMSMOTE | :x: |
Imbalanced-Learn | Combined over & under sampling | SMOTEENN | :x: |
Imbalanced-Learn | Combined over & under sampling | SMOTETomek | :x: |
Imbalanced-Learn | Ensemble Methods | EasyEnsembleClassifier | :x: |
Imbalanced-Learn | Ensemble Methods | RUSBoostClassifier | :x: |
Imbalanced-Learn | Ensemble Methods | BalancedBaggingClassifier | :x: |
Imbalanced-Learn | Ensemble Methods | BalancedRandomForestClassifier | :x: |
XGBoost | Ensemble Methods | XGBRegressor | :heavy_check_mark: |
XGBoost | Ensemble Methods | XGBClassifier | :heavy_check_mark: |
XGBoost | Ensemble Methods | XGBRanker | :heavy_check_mark: |
XGBoost | Ensemble Methods | XGBRFRegressor | :heavy_check_mark: |
XGBoost | Ensemble Methods | XGBRFClassifier | :heavy_check_mark: |
LightGBM | Ensemble Methods | LGBMClassifier | :heavy_check_mark: |
LightGBM | Ensemble Methods | LGBMRegressor | :heavy_check_mark: |
LightGBM | Ensemble Methods | LGBMRanker | :heavy_check_mark: |
CatBoost | Ensemble Methods | CatBoostClassifier | :heavy_check_mark: |
CatBoost | Ensemble Methods | CatBoostRanker | :heavy_check_mark: |
CatBoost | Ensemble Methods | CatBoostRegressor | :heavy_check_mark: |
kmodes | Clustering | KModes | :heavy_check_mark: |
kmodes | Clustering | KPrototypes | :heavy_check_mark: |
Scikit-Learn-extra | Clustering | cluster.KMedoids | :x: |
Scikit-Learn-extra | Clustering | cluster.CommonNNClustering | :x: |
Scikit-Learn-extra | Kernel approximation | kernel_approximation.Fastfood | :x: |
Scikit-Learn-extra | EigenPro | kernel_methods.EigenProRegressor | :x: |
Scikit-Learn-extra | Robust | kernel_methods.EigenProClassifier | :x: |
Scikit-Learn-extra | Robust | robust.RobustWeightedClassifier | :x: |
Scikit-Learn-extra | Robust | robust.RobustWeightedRegressor | :x: |
Scikit-Learn-extra | Robust | robust.RobustWeightedKMeans | :x: |
HDBSCAN | Clustering | HDBSCAN | :heavy_check_mark: |
UMAP | Manifold Learning | UMAP | :heavy_check_mark: |
PyNNDescent | Nearest Neighbors | NNDescent | :heavy_check_mark: |
Prince | Decomposition | PCA | :x: |
Prince | Decomposition | CA | :x: |
Prince | Decomposition | MCA | :x: |
Prince | Decomposition | MFA | :x: |
Prince | Decomposition | FAMD | :x: |
Prince | Decomposition | GPA | :x: |
MLChemAD | Applicability Domain | BoundingBoxApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | ConvexHullApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | PCABoundingBoxApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | TopKatApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | LeverageApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | HotellingT2ApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | KernelDensityApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | IsolationForestApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | CentroidDistanceApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | KNNApplicabilityDomain | :heavy_check_mark: |
MLChemAD | Applicability Domain | StandardizationApproachApplicabilityDomain | :heavy_check_mark: |
openTSNE | Manifold Learning | openTSNE.TSNE | :heavy_check_mark: |
openTSNE | Manifold Learning | openTSNE.sklearn.TSNE | :heavy_check_mark: |
openTSNE | Manifold Learning | openTSNE.TSNE | :heavy_check_mark: |
openTSNE | Manifold Learning | openTSNE.sklearn.TSNE | :heavy_check_mark: |
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ml2json-0.4.0.tar.gz
.
File metadata
- Download URL: ml2json-0.4.0.tar.gz
- Upload date:
- Size: 61.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f128259a630e6d40f02ccbc851f86b037329fc75eb3fab82b41d6948eb7fa0b8 |
|
MD5 | e7168b24901df130445c81eac787f652 |
|
BLAKE2b-256 | 4c34f810a838012cf1841f82ab707aab4a494d55c8c4e5eca9e9917c5398b91b |
File details
Details for the file ml2json-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: ml2json-0.4.0-py3-none-any.whl
- Upload date:
- Size: 44.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | efd87a25788ebb882c4d153dc30e909b45ade67d39f85955067dbf5dd1a77204 |
|
MD5 | e43fc70170b783e1d95bfde3ec5ac1b2 |
|
BLAKE2b-256 | 45904f0ad87667027d5d0455d461c315bcad6ed67c04efd6ff6da88eed9f975d |