Skip to main content

TechYoung Machine Learning ToolKit

Project description

# ML3

Introduction

ML3是TechYoung课程辅助工具包.

## Distribution

Run the following commands to register, build and upload the package to PYPI.

python3 setup.py sdist upload

The home page on PYPI is: https://pypi.org/project/wcc/

Install

sudo pip3 install ml3

Usage

After installation, run the following command:

import ml3

Methods:

plot.histplot(data, column_name, **kwargs):

  • *data:* dataframe

  • *column_name:* column name of dataframe, 例如 “hr_mean”

  • *kwargs:* “xmin”, “xmax”

plot.gmmplot(data, column_names, k_range, **kwargs):

  • *data:* dataframe

  • *column_names:* list of columns name of dataframe, 例如 [“hr_mean”, “hr_std”]

  • *k_range:* the range of components (k), 例如 [2, 11] or (2, 11)

  • *kwargs:* “xmin”, “xmax”, “ymax”, “bins”

plot.kmeansplot(data, column_names, k_range, **kwargs):

  • *data:* dataframe

  • *column_names:* list of columns name of dataframe, 例如 [“hr_mean”, “hr_std”]

  • *k_range:* the range of clusters (k), 例如 [2, 11] or (2, 11)

  • *kwargs:* “xmin”, “xmax” “ymax”, “bins”

plot.metricplot(n_clusters_range, scores, scores2=[], **kwargs):

  • *n_clusters_range:* tuple or list of range,例如 (2, 10)

  • *scores:* list of score

  • *scores:* list of score2 (option)

  • *kwargs:* “x_label”, “y_label”

plot.errorbarplot(data, x, y=[], y2=[], **kwargs):

  • *data:* dataframe

  • *x:* x-axis column name,例如 “ctime”

  • *y:* y column name,例如 [“hr_mean”, “hr_std”]

  • *y2:* y2 column name,例如 [“br_mean”, “br_std”] (option)

  • *kwargs:* “X_LABEL”, “Y_LABEL”, “TITLE”, “LIMIT”

plot.pcaplot(data, column_names, **kwargs):

  • *data:* dataframe

  • *column_names:* list of columns name of dataframe, 例如 [“hr_mean”, “hr_std”]

  • *kwargs:* “n_components”

plot.tsenplot(data, column_names, **kwargs):

  • *data:* dataframe

  • *column_names:* list of columns name of dataframe, 例如 [“hr_mean”, “hr_std”]

  • *kwargs:* “n_components”

plot.kalmanplot(data, column_names, dim_x=2, dim_z=1, x=[], p=[], f=[], q=[], h=[], r=1, **kwargs):

  • *data:* dataframe

  • *column_names:* list of columns name of rawdata dataframe, 例如 [“hr”]

  • *dim_x:* the size of the state vector,状态空间维度

    • 默认为2

  • *dim_z:* the size of the measurement vector,观测矩阵维度

    • 默认为1

  • *x:* filter state estimate,初始状态预测矩阵

    • 默认为[1, 0.1],分别为心率和心率变化率

  • *p:* covariance matrix,协方差矩阵

    • 默认为[[1, 0.1], [0.1, 1]],心率变化率和人的心率是一定的关系,根据运动状态或者濒死会有很明显的差别,选择0.1代表有一定关系,但是不关系大

  • *q:* process uncertainty/noise,噪声矩阵,此矩阵不能为0,否则数据会异常

    • 默认为[[0.0001, 0], [0, 0.0001]],因为数据都是在cpu中进行,不会产生噪音

  • *r:* measurement uncertainty/noise,测量误差

    • 默认为1,测量误差,医疗器械心率误差规定为+-1

  • *h:* measurement function

    • Sometimes certain states are measured, when others are not. For example, the first, third and fifth states of a five-dimensional state vector are measurable, while second and fourth states are not measurable H = [[1, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]]

  • *f:* state transistion matrix,状态转移矩阵

    • 默认为[[1, 0.5], [0, 1]],此矩阵不能对称,否则会计算异常

  • *kwargs:* None

seaborn.boxplot(x, y, **kwargs):

此函数需要ml4进行对原始数据进行窗口化分类

  • *x:* the UNIX timestamp list from ml4

  • *y:* the data list from ml4

  • *kwargs:* “X_LABEL”, “Y_LABEL”, “TITLE”

seaborn.violinplot(x, y, **kwargs):

此函数需要ml4进行对原始数据进行窗口化分类

  • *x:* the UNIX timestamp list from ml4

  • *y:* the data list from ml4

  • *kwargs:* “X_LABEL”, “Y_LABEL”, “TITLE”

Example

import ml3
import ml4
import pandas as pd

data = pd.read_csv("feature.csv")
# histogram
ml3.plot.histplot(data, "hr_mean")
# error bar
ml3.plot.errorbarplot(data, "ctime", ["hr_mean", "hr_std"], ["br_mean", "br_std"])
# single feature
ml3.plot.kmeansplot(data, "hr_mean", (2, 10))
ml3.plot.gmmplot(data, "hr_mean", (2, 10))
# multiple features
ml3.plot.gmmplot(data, ["hr_mean", "hr_std", "br_mean", "br_std", "mo_mean", "mo_std"], (2, 10))
ml3.plot.kmeansplot(data, ["hr_mean", "hr_std", "br_mean", "br_std", "mo_mean", "mo_std"], (2, 10))
# two scores metricplot
scores = [110704, 75304, 60731, 52297, 45675, 41231, 37744, 35247, 33263]
scores2 = [0.05, 0.09, 0.15, 0.2, 0.3, 0.5, 0.6, 0.9, 1]
ml3.plot.metricplot((2, 11), scores, scores2)
# boxplot and violoinplot
x, y = ml4.ml4.getWindowData(data, "ctime", "hr")
timeList = []
for i in x:
    tmp = datetime.fromtimestamp(i)
    timeList.append(tmp.strftime("%H:%M"))
ml3.seaborn.boxplot(timeList, y)
ml3.seaborn.violinplot(timeList, y)


data = pd.read_csv("rawdata.csv")
ml3.plot.kalmanplot(data, ["hr"])

data["log1p"] = np.log1p(data["br_std"])
ml3.plot.kmeansplot(data, ["log1p"], (2, 10), ymax=15, bins=0.01)

Note

版本里的1.2.4是旧的版本。1.2.5和以后的版本是用于函数计算的版本。 1.2.5以及以后版本将去掉wcc自动框架. 目录下的子目录:libwebp-0.4.1-linux-x86-64 需要从网上下载,然后把里面的bin下的gif2webp放到/usr/bin里。这样就可以在wcc里调用了.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml3-1.2.7.tar.gz (12.4 kB view details)

Uploaded Source

File details

Details for the file ml3-1.2.7.tar.gz.

File metadata

  • Download URL: ml3-1.2.7.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for ml3-1.2.7.tar.gz
Algorithm Hash digest
SHA256 a503aa7be912ab76e826053109c45833bec4f756fb290be2abae5a699baac67f
MD5 67e1c40b748229c6a431facfc703dd81
BLAKE2b-256 d7f56b2461ab97809acd71d4da13b62f3d7397e92c773bd57dca0cd30eb7016c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page