5 ML Model are available to train bassed on provided dataset, user can select one regresion out of 5 for train.
Project description
Installation :
python 3.9 : pip install MLAlgos==1.0.0
python 3.10 : pip install MLAlgos==1.0.1
python 3.11 : pip install MLAlgos==1.0.2
Example:
from MLRegressions import Regressors
import pandas as pd
df = pd.read_csv('Sampledata.csv')
x = df.iloc[:,1:-1].values # Features
y = df.iloc[:,-1].values # Depended Variable
reg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)
obj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(), SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]
Linear Regression : obj[0].predict()
Polynomial Regression : obj[1].predict()
SVR : obj[2].predict()
DecisionTreeRegressor : obj[3].predict()
RandomForestRegressor : obj[4].predict()
data = reg.r2_score() # To get r2_scores data for train test set.
reg.plot_train_data() # To plot graphs for Trained set.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mlalgos-1.0.0.tar.gz
.
File metadata
- Download URL: mlalgos-1.0.0.tar.gz
- Upload date:
- Size: 62.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 436de8af91ed1874e1de3a59b8cf311a1a88dee1b1dc1dbfb31089d6ca4a86a7 |
|
MD5 | 48474f05a8eec38a6a066eb34fb9535b |
|
BLAKE2b-256 | aacc73328e151c74c759562e256c833901395bb7f2a78c7916fc20c15106144b |
File details
Details for the file MLAlgos-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: MLAlgos-1.0.0-py3-none-any.whl
- Upload date:
- Size: 61.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 42f792ce85d185fc61a6be4de3f3d7a8ebc70c8828bcbde44fb89c2d9027e613 |
|
MD5 | 6c577f5d947687f2097d1df7e56b3153 |
|
BLAKE2b-256 | a3ca2ac7e32cc36448edd9d3099e29bd7b673547e7dc7fb2922549aed8758824 |