Skip to main content

5 ML Model are available to train bassed on provided dataset, user can select one regresion out of 5 for train.

Project description

Installation :

python 3.9 : pip install MLAlgos==1.0.0

python 3.10 : pip install MLAlgos==1.0.1

python 3.11 : pip install MLAlgos==1.0.2

Example:

from MLRegressions import Regressors

import pandas as pd

df = pd.read_csv('Sampledata.csv')

x = df.iloc[:,1:-1].values # Features

y = df.iloc[:,-1].values # Depended Variable

reg = Regressors(x,y,skip_regressor=[],poly_degree=5, test_size=0.2, random_state=0)

obj = reg.fit_models() # To train Models & return class obj [LinearRegression(), LinearRegression(), SVR(), DecisionTreeRegressor(random_state=0), RandomForestRegressor(n_estimators=10, random_state=0)]

Linear Regression : obj[0].predict()

Polynomial Regression : obj[1].predict()

SVR : obj[2].predict()

DecisionTreeRegressor : obj[3].predict()

RandomForestRegressor : obj[4].predict()

data = reg.r2_score() # To get r2_scores data for train test set.

reg.plot_train_data() # To plot graphs for Trained set.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlalgos-1.0.0.tar.gz (62.1 kB view details)

Uploaded Source

Built Distribution

MLAlgos-1.0.0-py3-none-any.whl (61.5 kB view details)

Uploaded Python 3

File details

Details for the file mlalgos-1.0.0.tar.gz.

File metadata

  • Download URL: mlalgos-1.0.0.tar.gz
  • Upload date:
  • Size: 62.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.7

File hashes

Hashes for mlalgos-1.0.0.tar.gz
Algorithm Hash digest
SHA256 436de8af91ed1874e1de3a59b8cf311a1a88dee1b1dc1dbfb31089d6ca4a86a7
MD5 48474f05a8eec38a6a066eb34fb9535b
BLAKE2b-256 aacc73328e151c74c759562e256c833901395bb7f2a78c7916fc20c15106144b

See more details on using hashes here.

File details

Details for the file MLAlgos-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: MLAlgos-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 61.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.7

File hashes

Hashes for MLAlgos-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 42f792ce85d185fc61a6be4de3f3d7a8ebc70c8828bcbde44fb89c2d9027e613
MD5 6c577f5d947687f2097d1df7e56b3153
BLAKE2b-256 a3ca2ac7e32cc36448edd9d3099e29bd7b673547e7dc7fb2922549aed8758824

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page