A Python package that implements automatic prediction of electronic band gaps for a set of materials based on training data
Project description
ML Band Gaps (Materials)
Ideal candidate: skilled ML data scientist with solid knowledge of materials science.
Overview
The aim of this task is to create a python package that implements automatic prediction of electronic band gaps for a set of materials based on training data.
User story
As a user of this software I can predict the value of an electronic band gap after passing training data and structural information about the target material.
Requirements
- suggest the bandgap values for a set of materials designated by their crystallographic and stoichiometric properties
- the code shall be written in a way that can facilitate easy addition of other characteristics extracted from simulations (forces, pressures, phonon frequencies etc)
Expectations
- the code shall be able to suggest realistic values for slightly modified geometry sets - eg. trained on Si and Ge it should suggest the value of bandgap for Si49Ge51 to be between those of Si and Ge
- modular and object-oriented implementation
- commit early and often - at least once per 24 hours
Timeline
We leave exact timing to the candidate. Must fit Within 5 days total.
Notes
- use a designated github repository for version control
- suggested source of training data: materialsproject.org
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mlbands-1.0.1.tar.gz
.
File metadata
- Download URL: mlbands-1.0.1.tar.gz
- Upload date:
- Size: 9.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.1 CPython/3.8.3 Linux/5.15.0-56-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9672872f0df79de8c05f77723ad96089be4f97198cee4e53d3b8b595640dbc21 |
|
MD5 | 382da89993263e38de88921dc46d57d0 |
|
BLAKE2b-256 | fe5fbfceb05dea7444ab742b84a81152be979db57e9b224d0215113e12c9d56d |
File details
Details for the file mlbands-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: mlbands-1.0.1-py3-none-any.whl
- Upload date:
- Size: 10.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.1 CPython/3.8.3 Linux/5.15.0-56-generic
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dca61a4e4f7f8b24f93c2c48b4017ffa06ae79b5c421dc9b9f39f92be1f50294 |
|
MD5 | 405311ab4fe63f5134d7ae4f6a1a1283 |
|
BLAKE2b-256 | 1abe022d1934d0aa2e7ef8e237299b23f8f5db9a4c3ff8f75edf6c783082d712 |