Skip to main content

MLBOM documentation tool

Project description

MLBOMDoc

MLBOMDOC is a human-readable document generator for an ML-BOM (ML Bill of Materials). MLBOMs document Machine Learning model components which are typically contained within an SBOM (Software Bill of Materials). MLBOMs are supported for CycloneDX.

Installation

To install use the following command:

pip install mlbomdoc

Alternatively, just clone the repo and install dependencies using the following command:

pip install -U -r requirements.txt

The tool requires Python 3 (3.8+). It is recommended to use a virtual python environment especially if you are using different versions of python. virtualenv is a tool for setting up virtual python environments which allows you to have all the dependencies for the tool set up in a single environment, or have different environments set up for testing using different versions of Python.

Usage

usage: mlbomdoc [-h] [-i INPUT_FILE] [--debug] [-f {console,json,markdown,pdf}] [-o OUTPUT_FILE] [-V]

MLBOMdoc generates documentation for a MLBOM.

options:
  -h, --help            show this help message and exit
  -V, --version         show program's version number and exit

Input:
  -i INPUT_FILE, --input-file INPUT_FILE
                        Name of MLBOM file

Output:
  --debug               add debug information
  -f {console,json,markdown,pdf}, --format {console,json,markdown,pdf}
                        Output format (default: output to console)
  -o OUTPUT_FILE, --output-file OUTPUT_FILE
                        output filename (default: output to stdout)

Operation

The --input-file option is used to specify the MLBOM to be processed. The format of the SBOM is determined according to the following filename conventions.

SBOM Format Filename extension
CycloneDX JSON .json

The --output-file option is used to control the destination of the output generated by the tool. The default is to report to the console, but it can also be stored in a file (specified using --output-file option).

Example

Given the following MLBOM (test.json), the following output is produced to the console.

NOTE that the data is purely fictitious in order to demonstrate the capability of the tool.

{
  "$schema": "http://cyclonedx.org/schema/bom-1.5.schema.json",
  "bomFormat": "CycloneDX",
  "specVersion": "1.5",
  "serialNumber": "urn:uuid:997191f5-6c2b-4572-9a73-5e0f2d03cedd",
  "version": 1,
  "metadata": {
    "timestamp": "2024-01-02T11:02:22Z",
    "tools": {
      "components": [
        {
          "name": "lib4sbom",
          "version": "0.6.0",
          "type": "application"
        }
      ]
    },
    "component": {
      "type": "application",
      "bom-ref": "CDXRef-DOCUMENT",
      "name": "MLApp"
    }
  },
  "components": [
    {
      "type": "library",
      "bom-ref": "1-glibc",
      "name": "glibc",
      "version": "2.15",
      "supplier": {
        "name": "gnu"
      },
      "cpe": "cpe:/a:gnu:glibc:2.15",
      "licenses": [
        {
          "license": {
            "id": "GPL-3.0-only",
            "url": "https://www.gnu.org/licenses/gpl-3.0-standalone.html"
          }
        }
      ]
    },
    {
      "type": "operating-system",
      "bom-ref": "2-almalinux",
      "name": "almalinux",
      "version": "9.0",
      "supplier": {
        "name": "alma"
      },
      "cpe": "cpe:/o:alma:almalinux:9.0",
      "licenses": [
        {
          "license": {
            "id": "Apache-2.0",
            "url": "https://www.apache.org/licenses/LICENSE-2.0"
          }
        }
      ]
    },
    {
      "type": "library",
      "bom-ref": "3-glibc",
      "name": "glibc",
      "version": "2.29",
      "supplier": {
        "name": "gnu"
      },
      "cpe": "cpe:/a:gnu:glibc:2.29",
      "licenses": [
        {
          "license": {
            "id": "GPL-3.0-only",
            "url": "https://www.gnu.org/licenses/gpl-3.0-standalone.html"
          }
        }
      ],
      "properties": [
        {
          "name": "language",
          "value": "C"
        }
      ]
    },
    {
      "type": "library",
      "bom-ref": "4-tomcat",
      "name": "tomcat",
      "version": "9.0.46",
      "supplier": {
        "name": "apache"
      },
      "cpe": "cpe:/a:apache:tomcat:9.0.46",
      "licenses": [
        {
          "license": {
            "id": "Apache-2.0",
            "url": "https://www.apache.org/licenses/LICENSE-2.0"
          }
        }
      ]
    },
    {
      "type": "machine-learning-model",
      "bom-ref": "5-resnet-50",
      "name": "resnet-50",
      "version": "1.5",
      "supplier": {
        "name": "microsoft"
      },
      "description": "ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models.",
      "licenses": [
        {
          "license": {
            "id": "Apache-2.0",
            "url": "https://www.apache.org/licenses/LICENSE-2.0"
          }
        }
      ],
      "modelCard": {
        "bom-ref": "5-resnet-50-model",
        "modelParameters": {
          "approach": {
            "type": "supervised"
          },
          "task": "classification",
          "architectureFamily": "Convolutional neural network",
          "modelArchitecture": "ResNet-50",
          "datasets": [
            {
              "type": "dataset",
              "name": "ImageNet",
              "contents": {
                "url": "https://huggingface.co/datasets/imagenet-1k"
              },
              "classification": "public",
              "sensitiveData": "no personal data",
              "description": "ILSVRC 2012, commonly known as \"ImageNet\" is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or word phrases, is called a \"synonym set\" or \"synset\". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). ImageNet aims to provide on average 1000 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated.",
              "governance": {
                "owners": [
                  {
                    "organization": {
                      "name": "microsoft"
                    },
                    "contact": {
                      "email": "sales@microsoft.com"
                    }
                  },
                  {
                    "organization": {
                      "name": "microsoft"
                    },
                    "contact": {
                      "email": "consulting@microsoft.com"
                    }
                  }
                ]
              }
            }
          ],
          "inputs": [
            {
              "format": "image"
            }
          ],
          "outputs": [
            {
              "format": "image class"
            }
          ]
        },
        "quantitativeAnalysis": {
          "performanceMetrics": [
            {
              "type": "CPU",
              "value": "10%",
              "confidenceInterval": {
                "lowerBound": "8",
                "upperBound": "12"
              }
            }
          ],
          "graphics": {
            "description": "Test data",
            "collection": [
              {
                "name": "cat",
                "image": {
                  "contentType": "text/plain",
                  "encoding": "base64",
                  "content": "cat.jpg"
                }
              },
              {
                "name": "dog",
                "image": {
                  "contentType": "text/plain",
                  "encoding": "base64",
                  "content": "dog.jpg"
                }
              }
            ]
          }
        },
        "considerations": {
          "users": [
            "Researcher"
          ],
          "technicalLimitations": [
            "To be used in the EU.",
            "To be used in the UK."
          ],
          "ethicalConsiderations": [
            {
              "name": "User from prohibited location",
              "mitigationStrategy": "Use geolocation to validate source of request."
            }
          ]
        },
        "properties": [
          {
            "name": "num_channels",
            "value": "3"
          }
        ]
      }
    }
  ]
}

The following commands will generate a summary of the contents of the MLBOM to the console.

mlbomdoc --input test.json 

╭───────────────╮
│ MLBOM Summary │
╰───────────────╯
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Item        Details                                                      ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ MLBOM File  test.json                                                    │
│ MLBOM Type  cyclonedx                                                    │
│ Version     1.5                                                          │
│ Name        MLApp                                                        │
│ Creator     tool:lib4sbom#0.6.0                                          │
│ Created     2024-01-02T11:02:22Z                                         │
└────────────┴──────────────────────────────────────────────────────────────┘

╭───────────────────────────╮
│ Model Details - resnet-50 │
╰───────────────────────────╯
┏━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Item      Value      ┃
┡━━━━━━━━━━╇━━━━━━━━━━━━┩
│ Version   1.5        │
│ Supplier  microsoft  │
│ License   Apache-2.0 │
└──────────┴────────────┘
╭──────────────────╮
│ Model Parameters │
╰──────────────────╯
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Parameter            Value                        ┃
┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Approach             supervised                   │
│ Task                 classification               │
│ Architecture Family  Convolutional neural network │
│ Model Architecture   ResNet-50                    │
│ Input                image                        │
│ Output               image class                  │
└─────────────────────┴──────────────────────────────┘
╭───────────────╮
│ Model Dataset │
╰───────────────╯
┏━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Parameter       Value                                                                                                                                                                                     ┃
┡━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Type            dataset                                                                                                                                                                                   │
│ Contents URL    https://huggingface.co/datasets/imagenet-1k                                                                                                                                               │
│ Classification  public                                                                                                                                                                                    │
│ Sensitive Data  no personal data                                                                                                                                                                          │
│ Description     ILSVRC 2012, commonly known as "ImageNet" is an image dataset organized according to the WordNet hierarchy. Each meaningful concept in WordNet, possibly described by multiple words or   │
│                 word phrases, is called a "synonym set" or "synset". There are more than 100,000 synsets in WordNet, majority of them are nouns (80,000+). ImageNet aims to provide on average 1000       │
│                 images to illustrate each synset. Images of each concept are quality-controlled and human-annotated.                                                                                      │
└────────────────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
╭────────────────────╮
│ Dataset Governance │
╰────────────────────╯
┏━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Category  Organization  Contact                  ┃
┡━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Owner     microsoft     sales@microsoft.com      │
│ Owner     microsoft     consulting@microsoft.com │
└──────────┴──────────────┴──────────────────────────┘
╭───────────────────────╮
│ Quantitative Analysis │
╰───────────────────────╯
╭─────────────────────╮
│ Performance Metrics │
╰─────────────────────╯
┏━━━━━━┳━━━━━━━┳━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ Type  Value  Slice  Lower BOund  Upper Bound ┃
┡━━━━━━╇━━━━━━━╇━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ CPU   10%           8            12          │
└──────┴───────┴───────┴─────────────┴─────────────┘
╭──────────────────────╮
│ Graphics - Test data │
╰──────────────────────╯
┏━━━━━━┳━━━━━━━━━┓
┃ Name  Content ┃
┡━━━━━━╇━━━━━━━━━┩
│ cat   cat.jpg │
│ dog   dog.jpg │
└──────┴─────────┘
╭────────────────╮
│ Considerations │
╰────────────────╯
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Category                                      Value                                          ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Users                                         Researcher                                     │
│ Technical Limitations                         To be used in the EU.                          │
│ Technical Limitations                         To be used in the UK.                          │
│ Ethical Considerations                        User from prohibited location                  │
│ Ethical Considerations - Mitigation Strategy  Use geolocation to validate source of request. │
└──────────────────────────────────────────────┴────────────────────────────────────────────────┘
╭────────────╮
│ Properties │
╰────────────╯
┏━━━━━━━━━━━━━━┳━━━━━━━┓
┃ Name          Value ┃
┡━━━━━━━━━━━━━━╇━━━━━━━┩
│ num_channels  3     │
└──────────────┴───────┘
                                                                   

Licence

Licenced under the Apache 2.0 Licence.

Limitations

The tool has the following limitations

  • Invalid SBOMs will result in unpredictable results.

Feedback and Contributions

Bugs and feature requests can be made via GitHub Issues.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

mlbomdoc-0.1.1-py2.py3-none-any.whl (13.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file mlbomdoc-0.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: mlbomdoc-0.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for mlbomdoc-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 51e526b458ae5140aa8cc84a7e992bf99c8b521f1e138f08bb70e07fce2b0269
MD5 eedd0c6ab6ebbdcbdfcd4da3f2cee35f
BLAKE2b-256 e1e829c872ef17f557a62ff4081eeb6e1f54f994f47ca58890fb4be6409c7a2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page