Skip to main content

Multi-Label Confusion Matrix

Project description

MLCM creates a 2D Multi-Label Confusion Matrix

Please read the following paper for more information:
M. Heydarian, T. Doyle, and R. Samavi, MLCM: Multi-Label Confusion Matrix,
IEEE Access, Feb. 2022, DOI: 10.1109/ACCESS.2022.3151048
For other projects please see https://biomedic.ai/

Please cite the paper if you are using the MLCM.
This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

An example on how to use MLCM package:

% Importing libraries

from mlcm import mlcm
import numpy as np

% Creating random input (multi-label data)

number_of_samples = 1000
number_of_classes = 5
label_true = np.random.randint(2, size=(number_of_samples, number_of_classes))
label_pred = np.random.randint(2, size=(number_of_samples, number_of_classes))

% Calling mlcm and illustrating the results

conf_mat,normal_conf_mat = mlcm.cm(label_true,label_pred)
print('\nRaw confusion Matrix:')
print(conf_mat)
print('\nNormalized confusion Matrix (%):')
print(normal_conf_mat)

one_vs_rest = mlcm.stats(conf_mat)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlcm-0.0.1.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

mlcm-0.0.1-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file mlcm-0.0.1.tar.gz.

File metadata

  • Download URL: mlcm-0.0.1.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.50.2 importlib-metadata/4.11.0 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlcm-0.0.1.tar.gz
Algorithm Hash digest
SHA256 aa9bfa59b68d8861901bc44f18d341adda3ebe5da36ad901c9346a183fdfa0e8
MD5 d0d94f6c2bbc2647095e76edddf04f4f
BLAKE2b-256 0af3d811922cd8d7428215957297167f7d474f0c3d171f9a46533b8d518e1320

See more details on using hashes here.

File details

Details for the file mlcm-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: mlcm-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.22.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.50.2 importlib-metadata/4.11.0 keyring/18.0.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.10

File hashes

Hashes for mlcm-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8d688c10b37506db6af011ecc968f6a8c05c0233083b8d9459e607a48916cbea
MD5 fe7b8eee7445cd592cdb60dae2f5994f
BLAKE2b-256 b16aeb850191f38a973d705929dc055595c0fd27c071f53cad69d459b3b951bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page