Skip to main content

Machine Learning Experiment Hyperparameter Optimization

Project description

Lightweight Hyperparameter Optimization 🚀

Pyversions PyPI version Code style: black Colab

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline. It supports real, integer & categorical search variables and single- or multi-objective optimization.

Core features include the following:

  • API Simplicity: strategy.ask(), strategy.tell() interface & space definition.
  • Strategy Diversity: Grid, random, coordinate search, SMBO & wrapping around FAIR's nevergrad.
  • Search Space Refinement based on the top performing configs via strategy.refine(top_k=10).
  • Export of configurations to execute via e.g. python train.py --config_fname config.yaml.
  • Storage & reload search logs via strategy.save(<log_fname>), strategy.load(<log_fname>).

For a quickstart check out the notebook blog 📖.

The API 🎮

from mle_hyperopt import RandomSearch

# Instantiate random search class
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                        "end": 0.5,
                                        "prior": "log-uniform"}},
                        integer={"batch_size": {"begin": 32,
                                                "end": 128,
                                                "prior": "uniform"}},
                        categorical={"arch": ["mlp", "cnn"]})

# Simple ask - eval - tell API
configs = strategy.ask(5)
values = [train_network(**c) for c in configs]
strategy.tell(configs, values)

Implemented Search Types 🔭

Search Type Description search_config
drawing GridSearch Search over list of discrete values -
drawing RandomSearch Random search over variable ranges refine_after, refine_top_k
drawing CoordinateSearch Coordinate-wise optimization with fixed defaults order, defaults
drawing SMBOSearch Sequential model-based optimization base_estimator, acq_function, n_initial_points
drawing NevergradSearch Multi-objective nevergrad wrapper optimizer, budget_size, num_workers

Variable Types & Hyperparameter Spaces 🌍

Variable Type Space Specification
drawing real Real-valued Dict: begin, end, prior/bins (grid)
drawing integer Integer-valued Dict: begin, end, prior/bins (grid)
drawing categorical Categorical List: Values to search over

Installation ⏳

A PyPI installation is available via:

pip install mle-hyperopt

Alternatively, you can clone this repository and afterwards 'manually' install it:

git clone https://github.com/RobertTLange/mle-hyperopt.git
cd mle-hyperopt
pip install -e .

Further Options 🚴

Saving & Reloading Logs 🏪

# Storing & reloading of results from .pkl
strategy.save("search_log.json")
strategy = RandomSearch(..., reload_path="search_log.json")

# Or manually add info after class instantiation
strategy = RandomSearch(...)
strategy.load("search_log.json")

Search Decorator 🧶

from mle_hyperopt import hyperopt

@hyperopt(strategy_type="grid",
          num_search_iters=25,
          real={"x": {"begin": 0., "end": 0.5, "bins": 5},
                "y": {"begin": 0, "end": 0.5, "bins": 5}})
def circle(config):
    distance = abs((config["x"] ** 2 + config["y"] ** 2))
    return distance

strategy = circle()

Storing Configuration Files 📑

# Store 2 proposed configurations - eval_0.yaml, eval_1.yaml
strategy.ask(2, store=True)
# Store with explicit configuration filenames - conf_0.yaml, conf_1.yaml
strategy.ask(2, store=True, config_fnames=["conf_0.yaml", "conf_1.yaml"])

Retrieving Top Performers & Visualizing Results 📉

# Get the top k best performing configurations
id, configs, values = strategy.get_best(top_k=4)

# Plot timeseries of best performing score over search iterations
strategy.plot_best()

# Print out ranking of best performers
strategy.print_ranking(top_k=3)

Refining the Search Space of Your Strategy 🪓

# Refine the search space after 5 & 10 iterations based on top 2 configurations
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
                                        "end": 0.5,
                                        "prior": "uniform"}},
                        integer={"batch_size": {"begin": 1,
                                                "end": 5,
                                                "prior": "log-uniform"}},
                        categorical={"arch": ["mlp", "cnn"]},
                        search_config={"refine_after": [5, 10],
                                       "refine_top_k": 2})

# Or do so manually using `refine` method
strategy.tell(...)
strategy.refine(top_k=2)

Note the search space refinement is only implemented for random, SMBO and nevergrad-based search strategies.

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue :hugs:. Here are some features I want to implement for the next release:

  • Add text to notebook for what is implemented
  • Update Readme text
  • Update mle-toolbox webpage intro
  • Release and make sure installation works
  • Draft tweet for release
  • Synergies with mle-logging

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mle_hyperopt-0.0.2.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

mle_hyperopt-0.0.2-py3-none-any.whl (27.0 kB view details)

Uploaded Python 3

File details

Details for the file mle_hyperopt-0.0.2.tar.gz.

File metadata

  • Download URL: mle_hyperopt-0.0.2.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for mle_hyperopt-0.0.2.tar.gz
Algorithm Hash digest
SHA256 5323afae14b16cc32c85194e3849c6a1c19e791a3952e054031a1f00844df139
MD5 454e89748e17b8191a0a10884db170b2
BLAKE2b-256 e5ef13848f7f132855f03f2f1330fee96a7c56a3c2e02a32c07973cdb15b51a5

See more details on using hashes here.

File details

Details for the file mle_hyperopt-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: mle_hyperopt-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 27.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for mle_hyperopt-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ba83e07ebec54f70afb338a3cfdd3484c57287805ea6e8bc1bd72c76f13fa6fc
MD5 47c6bfe199a82f6f87f16474ddb16e7f
BLAKE2b-256 ee28b61a4cacf59c71b72a76120acbbcecff35ee53da14ec05c52aea90be6e1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page