Machine Learning Experiment Hyperparameter Optimization
Project description
Lightweight Hyperparameter Optimization 🚂
The mle-hyperopt
package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline. It supports real, integer & categorical search variables and single- or multi-objective optimization.
Core features include the following:
- API Simplicity:
strategy.ask()
,strategy.tell()
interface & space definition. - Strategy Diversity: Grid, random, coordinate search, SMBO & wrapping FAIR's
nevergrad
, Successive Halving, Hyperband, Population-Based Training. - Search Space Refinement based on the top performing configs via
strategy.refine(top_k=10)
. - Export of configurations to execute via e.g.
python train.py --config_fname config.yaml
. - Storage & reload search logs via
strategy.save(<log_fname>)
,strategy.load(<log_fname>)
.
For a quickstart check out the notebook blog 📖.
The API 🎮
from mle_hyperopt import RandomSearch
# Instantiate random search class
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
"end": 0.5,
"prior": "log-uniform"}},
integer={"batch_size": {"begin": 32,
"end": 128,
"prior": "uniform"}},
categorical={"arch": ["mlp", "cnn"]})
# Simple ask - eval - tell API
configs = strategy.ask(5)
values = [train_network(**c) for c in configs]
strategy.tell(configs, values)
Implemented Search Types 🔭
Search Type | Description | search_config |
|
---|---|---|---|
GridSearch |
Search over list of discrete values | - | |
RandomSearch |
Random search over variable ranges | refine_after , refine_top_k |
|
CoordinateSearch |
Coordinate-wise optimization with fixed defaults | order , defaults |
|
SMBOSearch |
Sequential model-based optimization (Hutter et al., 2011) | base_estimator , acq_function , n_initial_points |
|
NevergradSearch |
Multi-objective nevergrad wrapper | optimizer , budget_size , num_workers |
|
HalvingSearch |
Successive Halving (Karmin et al., 2013) | min_budget , num_arms , halving_coeff |
|
HyperbandSearch |
Hyperband (Li et al., 2018) | max_resource , eta |
|
PBTSearch |
Population-Based Training (Jaderberg et al., 2017) | explore , exploit |
Variable Types & Hyperparameter Spaces 🌍
Variable | Type | Space Specification | |
---|---|---|---|
real |
Real-valued | Dict : begin , end , prior /bins (grid) |
|
integer |
Integer-valued | Dict : begin , end , prior /bins (grid) |
|
categorical |
Categorical | List : Values to search over |
Installation ⏳
A PyPI installation is available via:
pip install mle-hyperopt
Alternatively, you can clone this repository and afterwards 'manually' install it:
git clone https://github.com/mle-infrastructure/mle-hyperopt.git
cd mle-hyperopt
pip install -e .
Search Method Highlights 🔎
Grid Search 🟥
strategy = GridSearch(
real={"lrate": {"begin": 0.1,
"end": 0.5,
"bins": 5}},
integer={"batch_size": {"begin": 1,
"end": 5,
"bins": 1}},
categorical={"arch": ["mlp", "cnn"]},
fixed_params={"momentum": 0.9}) # Add fixed param setting to each config
configs = strategy.ask()
Hyperband 🎸
strategy = HyperbandSearch(
real={"lrate": {"begin": 0.1,
"end": 0.5,
"prior": "uniform"}},
integer={"batch_size": {"begin": 1,
"end": 5,
"prior": "log-uniform"}},
categorical={"arch": ["mlp", "cnn"]},
search_config={"max_resource": 81,
"eta": 3},
seed_id=42, # Fix randomness for reproducibility
verbose=True)
configs = strategy.ask()
Population-Based Training 🦎
strategy = PBTSearch(
real={"lrate": {"begin": 0.1,
"end": 0.5,
"prior": "uniform"}}
search_config={
"exploit": {"strategy": "truncation", "selection_percent": 0.2},
"explore": {"strategy": "perturbation", "perturb_coeffs": [0.8, 1.2]},
"steps_until_ready": 4,
"num_workers": 10,
},
maximize_objective=True # Max score instead of min
)
configs = strategy.ask()
Further Options 🚴
Saving & Reloading Logs 🏪
# Storing & reloading of results from .json/.yaml/.pkl
strategy.save("search_log.json")
strategy = RandomSearch(..., reload_path="search_log.json")
# Or manually add info after class instantiation
strategy = RandomSearch(...)
strategy.load("search_log.json")
Search Decorator 🧶
from mle_hyperopt import hyperopt
@hyperopt(strategy_type="Grid",
num_search_iters=25,
real={"x": {"begin": 0., "end": 0.5, "bins": 5},
"y": {"begin": 0, "end": 0.5, "bins": 5}})
def circle(config):
distance = abs((config["x"] ** 2 + config["y"] ** 2))
return distance
strategy = circle()
Storing Configuration Files 📑
# Store 2 proposed configurations - eval_0.yaml, eval_1.yaml
strategy.ask(2, store=True)
# Store with explicit configuration filenames - conf_0.yaml, conf_1.yaml
strategy.ask(2, store=True, config_fnames=["conf_0.yaml", "conf_1.yaml"])
Storing Checkpoint Paths 🛥️
# Ask for 5 configurations to evaluate and get their scores
configs = strategy.ask(5)
values = ...
# Get list of checkpoint paths corresponding to config runs
ckpts = [f"ckpt_{i}.pt" for i in range(len(configs))]
# `tell` parameter configs, eval scores & ckpt paths
# Required for Halving, Hyperband and PBT
strategy.tell(configs, scores, ckpts)
Retrieving Top Performers & Visualizing Results 📉
# Get the top k best performing configurations
id, configs, values = strategy.get_best(top_k=4)
# Plot timeseries of best performing score over search iterations
strategy.plot_best()
# Print out ranking of best performers
strategy.print_ranking(top_k=3)
Refining the Search Space of Your Strategy 🪓
# Refine the search space after 5 & 10 iterations based on top 2 configurations
strategy = RandomSearch(real={"lrate": {"begin": 0.1,
"end": 0.5,
"prior": "log-uniform"}},
integer={"batch_size": {"begin": 1,
"end": 5,
"prior": "uniform"}},
categorical={"arch": ["mlp", "cnn"]},
search_config={"refine_after": [5, 10],
"refine_top_k": 2})
# Or do so manually using `refine` method
strategy.tell(...)
strategy.refine(top_k=2)
Note that the search space refinement is only implemented for random, SMBO and nevergrad
-based search strategies.
Simple Command Line interface ⌨️
You can also directly launch a search for your applications. This requires a couple of things: A python script <script>.py
containing a function main(config)
, which runs your simulation for a given configuration dictionary. It should return a single scalar performance score, which will be logged. Furthermore, you will need a search configuration <search>.yaml
file and can add default fixed parameter settings in <base>.yaml
.
mle-search <script>.py -base <base>.yaml -search <search>.yaml -iters <search_iters>
Have a look at the example, which can be executed via mle-search run_mle_search.py -search search.yaml -base base.yaml
.
Citing the MLE-Infrastructure ✏️
If you use mle-hyperopt
in your research, please cite it as follows:
@software{mle_infrastructure2021github,
author = {Robert Tjarko Lange},
title = {{MLE-Infrastructure}: A Set of Lightweight Tools for Distributed Machine Learning Experimentation},
url = {http://github.com/mle-infrastructure},
year = {2021},
}
Development 👷
You can run the test suite via python -m pytest -vv tests/
. If you find a bug or are missing your favourite feature, feel free to create an issue and/or start contributing 🤗.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mle_hyperopt-0.0.6.tar.gz
.
File metadata
- Download URL: mle_hyperopt-0.0.6.tar.gz
- Upload date:
- Size: 39.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb4e0c25f1bdeeceef521a859e86d2c826974a153d7245ff195c06ec82136ffb |
|
MD5 | c64bfb6ce7537d165944f7564a1992d4 |
|
BLAKE2b-256 | d8f70275ca2ef91eadd70faaac13c4596ed4d601574ead86f596d94e9b67b846 |
File details
Details for the file mle_hyperopt-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: mle_hyperopt-0.0.6-py3-none-any.whl
- Upload date:
- Size: 52.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b0cb821b0cb91d5f3283ae9fa001ae63a8e23993e699278c1d4d365b71a5478 |
|
MD5 | 42360c7a8cec4d23dc0a02d644238c8b |
|
BLAKE2b-256 | 0ea5d2f5b967b4646d806c5b224dd27a96b7d51bb4672defa00737955d6bd420 |