Skip to main content

Machine Learning Experiment Logging

Project description

A Lightweight Logger for ML Experiments 📖

Pyversions PyPI version Code style: black Colab

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and combination of multi-configuration runs. For a quickstart checkout the notebook blog 🚀

The API 🎮

from mle_logging import MLELogger

# Instantiate logging to experiment_dir
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir="experiment_dir/",
                model_type='torch')

time_tic = {'num_updates': 10, 'num_epochs': 1}
stats_tic = {'train_loss': 0.1234, 'test_loss': 0.1235}

# Update the log with collected data & save it to .hdf5
log.update(time_tic, stats_tic)
log.save()

You can also log model checkpoints, matplotlib figures and other .pkl compatible objects.

# Save a model (torch, tensorflow, sklearn, jax, numpy)
import torchvision.models as models
model = models.resnet18()
log.save_model(model)

# Save a matplotlib figure as .png
fig, ax = plt.subplots()
log.save_plot(fig)

# You can also save (somewhat) arbitrary objects .pkl
some_dict = {"hi" : "there"}
log.save_extra(some_dict)

Or do everything in a single line...

log.update(time_tic, stats_tic, model, fig, extra, save=True)

File Structure & Re-Loading 📚

The MLELogger will create a nested directory, which looks as follows:

experiment_dir
├── extra: Stores saved .pkl object files
├── figures: Stores saved .png figures
├── logs: Stores .hdf5 log files (meta, stats, time)
├── models: Stores different model checkpoints
    ├── final: Stores most recent checkpoint
    ├── every_k: Stores every k-th checkpoint provided in update
    ├── top_k: Stores portfolio of top-k checkpoints based on performance
├── tboards: Stores tensorboards for model checkpointing
├── <config_name>.json: Copy of configuration file (if provided)

For visualization and post-processing load the results via

from mle_logging import load_log
log_out = load_log("experiment_dir/")

# The results can be accessed via meta, stats and time keys
# >>> log_out.meta.keys()
# odict_keys(['experiment_dir', 'extra_storage_paths', 'fig_storage_paths', 'log_paths', 'model_ckpt', 'model_type'])
# >>> log_out.stats.keys()
# odict_keys(['test_loss', 'train_loss'])
# >>> log_out.time.keys()
# odict_keys(['time', 'num_epochs', 'num_updates', 'time_elapsed'])

If an experiment was aborted, you can reload and continue the previous run via the reload=True option:

log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir="experiment_dir/",
                model_type='torch',
                reload=True)

Installation ⏳

A PyPI installation is available via:

pip install mle-logging

Alternatively, you can clone this repository and afterwards 'manually' install it:

git clone https://github.com/RobertTLange/mle-logging.git
cd mle-logging
pip install -e .

Advanced Options 🚴

Merging Multiple Logs 👫

Merging Multiple Random Seeds 🌱 + 🌱

from mle_logging import merge_seed_logs
merge_seed_logs("multi_seed.hdf", "experiment_dir/")
log_out = load_log("experiment_dir/")
# >>> log.eval_ids
# ['seed_1', 'seed_2']

Merging Multiple Configurations 🔖 + 🔖

from mle_logging import merge_config_logs, load_meta_log
merge_config_logs(experiment_dir="experiment_dir/",
                  all_run_ids=["config_1", "config_2"])
meta_log = load_meta_log("multi_config_dir/meta_log.hdf5")
# >>> log.eval_ids
# ['config_2', 'config_1']
# >>> meta_log.config_1.stats.test_loss.keys()
# odict_keys(['mean', 'std', 'p50', 'p10', 'p25', 'p75', 'p90']))

Plotting of Logs 🧑‍🎨

meta_log = load_meta_log("multi_config_dir/meta_log.hdf5")
meta_log.plot("train_loss", "num_updates")

Storing Checkpoint Portfolios 📂

Logging every k-th checkpoint update ❗ ⏩ ... ⏩ ❗

# Save every second checkpoint provided in log.update (stored in models/every_k)
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir='every_k_dir/',
                model_type='torch',
                ckpt_time_to_track='num_updates',
                save_every_k_ckpt=2)

Logging top-k checkpoints based on metric 🔱

# Save top-3 checkpoints provided in log.update (stored in models/top_k)
# Based on minimizing the test_loss metric
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
                what_to_track=['train_loss', 'test_loss'],
                experiment_dir="top_k_dir/",
                model_type='torch',
                ckpt_time_to_track='num_updates',
                save_top_k_ckpt=3,
                top_k_metric_name="test_loss",
                top_k_minimize_metric=True)

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue :hugs:. Here are some features I want to implement for the next release:

  • Add a progress bar if total number of updates is specified
  • Add Weights and Biases Backend Support
  • Extend Tensorboard logging (for JAX/TF models)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mle_logging-0.0.2.tar.gz (25.4 kB view details)

Uploaded Source

Built Distribution

mle_logging-0.0.2-py3-none-any.whl (28.4 kB view details)

Uploaded Python 3

File details

Details for the file mle_logging-0.0.2.tar.gz.

File metadata

  • Download URL: mle_logging-0.0.2.tar.gz
  • Upload date:
  • Size: 25.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for mle_logging-0.0.2.tar.gz
Algorithm Hash digest
SHA256 2239d7b3534fc5793a354597553a8c9873f56516aa73753e3d2d0ee4f4c67619
MD5 18d29a637d47b8b7131df6532a6414f1
BLAKE2b-256 b570487fc3d392a6a2faa90e1afe7d0f684a005bcd72c2fcdd3c6ac9874315f0

See more details on using hashes here.

File details

Details for the file mle_logging-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: mle_logging-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 28.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for mle_logging-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 7934a0759d1603fecbc24324c217b6af5cfc2aac9cfef4748ecc01cca31234ef
MD5 f3ea46c51a903ba7ef199b8f5a40d938
BLAKE2b-256 c80868fa30849eca59b351f213e2346490a345e196e28610516edd376447e414

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page