Skip to main content

Machine Learning Experiment Job Scheduler

Project description

Lightweight Cluster/Cloud VM Job Management 🚀

Pyversions PyPI version Code style: black

Are you looking for a tool to manage your training runs locally, on Slurm/Open Grid Engine clusters, SSH servers or Google Cloud Platform VMs? mle-scheduler provides a lightweight API to launch and monitor job queues. It smoothly orchestrates simultaneous runs for different configurations and/or random seeds. It is meant to reduce boilerplate and to make job resource specification intuitive. It comes with two core pillars:

  • MLEJob: Launches and monitors a single job on a resource (Slurm, Open Grid Engine, GCP, SSH, etc.).
  • MLEQueue: Launches and monitors a queue of jobs with different training configurations and/or seeds.

For a quickstart check out the notebook blog or the example scripts 📖

Colab Local Slurm Grid Engine SSH GCP

Installation ⏳

pip install mle-scheduler

Managing a Single Job with MLEJob Locally 🚀

from mle_scheduler import MLEJob

# python train.py -config base_config_1.yaml -exp_dir logs_single -seed_id 1
job = MLEJob(
    resource_to_run="local",
    job_filename="train.py",
    config_filename="base_config_1.yaml",
    experiment_dir="logs_single",
    seed_id=1
)

_ = job.run()

Managing a Queue of Jobs with MLEQueue Locally 🚀...🚀

from mle_scheduler import MLEQueue

# python train.py -config base_config_1.yaml -seed 0 -exp_dir logs_queue/<date>_base_config_1
# python train.py -config base_config_1.yaml -seed 1 -exp_dir logs_queue/<date>_base_config_1
# python train.py -config base_config_2.yaml -seed 0 -exp_dir logs_queue/<date>_base_config_2
# python train.py -config base_config_2.yaml -seed 1 -exp_dir logs_queue/<date>_base_config_2
queue = MLEQueue(
    resource_to_run="local",
    job_filename="train.py",
    config_filenames=["base_config_1.yaml",
                      "base_config_2.yaml"],
    random_seeds=[0, 1],
    experiment_dir="logs_queue"
)

queue.run()

Launching Slurm Cluster-Based Jobs 🐒

# Each job requests 5 CPU cores & 1 V100S GPU & loads CUDA 10.0
job_args = {
    "partition": "<SLURM_PARTITION>",  # Partition to schedule jobs on
    "env_name": "mle-toolbox",  # Env to activate at job start-up
    "use_conda_venv": True,  # Whether to use anaconda venv
    "num_logical_cores": 5,  # Number of requested CPU cores per job
    "num_gpus": 1,  # Number of requested GPUs per job
    "gpu_type": "V100S",  # GPU model requested for each job
    "modules_to_load": "nvidia/cuda/10.0"  # Modules to load at start-up
}

queue = MLEQueue(
    resource_to_run="slurm-cluster",
    job_filename="train.py",
    job_arguments=job_args,
    config_filenames=["base_config_1.yaml",
                      "base_config_2.yaml"],
    experiment_dir="logs_slurm",
    random_seeds=[0, 1]
)
queue.run()

Launching GridEngine Cluster-Based Jobs 🐘

# Each job requests 5 CPU cores & 1 V100S GPU w. CUDA 10.0 loaded
job_args = {
    "queue": "<GRID_ENGINE_QUEUE>",  # Queue to schedule jobs on
    "env_name": "mle-toolbox",  # Env to activate at job start-up
    "use_conda_venv": True,  # Whether to use anaconda venv
    "num_logical_cores": 5,  # Number of requested CPU cores per job
    "num_gpus": 1,  # Number of requested GPUs per job
    "gpu_type": "V100S",  # GPU model requested for each job
    "gpu_prefix": "cuda"  #$ -l {gpu_prefix}="{num_gpus}"
}

queue = MLEQueue(
    resource_to_run="slurm-cluster",
    job_filename="train.py",
    job_arguments=job_args,
    config_filenames=["base_config_1.yaml",
                      "base_config_2.yaml"],
    experiment_dir="logs_grid_engine",
    random_seeds=[0, 1]
)
queue.run()

Launching SSH Server-Based Jobs 🦊

ssh_settings = {
    "user_name": "<SSH_USER_NAME>",  # SSH server user name
    "pkey_path": "<PKEY_PATH>",  # Private key path (e.g. ~/.ssh/id_rsa)
    "main_server": "<SSH_SERVER>",  # SSH Server address
    "jump_server": '',  # Jump host address
    "ssh_port": 22,  # SSH port
    "remote_dir": "mle-code-dir",  # Dir to sync code to on server
    "start_up_copy_dir": True,  # Whether to copy code to server
    "clean_up_remote_dir": True  # Whether to delete remote_dir on exit
}

job_args = {
    "env_name": "mle-toolbox",  # Env to activate at job start-up
    "use_conda_venv": True  # Whether to use anaconda venv
}

queue = MLEQueue(
    resource_to_run="ssh-node",
    job_filename="train.py",
    config_filenames=["base_config_1.yaml",
                      "base_config_2.yaml"],
    random_seeds=[0, 1],
    experiment_dir="logs_ssh_queue",
    job_arguments=job_args,
    ssh_settings=ssh_settings)

queue.run()

Launching GCP VM-Based Jobs 🦄

cloud_settings = {
    "project_name": "<GCP_PROJECT_NAME>",  # Name of your GCP project
    "bucket_name": "<GCS_BUCKET_NAME>", # Name of your GCS bucket
    "remote_dir": "<GCS_CODE_DIR_NAME>",  # Name of code dir in bucket
    "start_up_copy_dir": True,  # Whether to copy code to bucket
    "clean_up_remote_dir": True  # Whether to delete remote_dir on exit
}

job_args = {
    "num_gpus": 0,  # Number of requested GPUs per job
    "gpu_type": None,  # GPU requested e.g. "nvidia-tesla-v100"
    "num_logical_cores": 1,  # Number of requested CPU cores per job
}

queue = MLEQueue(
    resource_to_run="gcp-cloud",
    job_filename="train.py",
    config_filenames=["base_config_1.yaml",
                      "base_config_2.yaml"],
    random_seeds=[0, 1],
    experiment_dir="logs_gcp_queue",
    job_arguments=job_args,
    cloud_settings=cloud_settings,
)
queue.run()

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue :hugs:. In future releases I plan on implementing the following:

  • Clean up TPU GCP VM & JAX dependencies case
  • Add local launching of cluster jobs via SSH to headnode
  • Add Docker/Singularity container setup support
  • Add Azure support
  • Add AWS support

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mle_scheduler-0.0.3.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

mle_scheduler-0.0.3-py3-none-any.whl (32.1 kB view details)

Uploaded Python 3

File details

Details for the file mle_scheduler-0.0.3.tar.gz.

File metadata

  • Download URL: mle_scheduler-0.0.3.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for mle_scheduler-0.0.3.tar.gz
Algorithm Hash digest
SHA256 3a50a9c87ef6592bdaba48343c94152308a5710e52b9f4ba3cb37a28840df845
MD5 97839302fb773b3337cd5962ad4554a6
BLAKE2b-256 ade143ba5e99af23269ea3972c27f7e362628b447c55720645adffda6fa94825

See more details on using hashes here.

File details

Details for the file mle_scheduler-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: mle_scheduler-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 32.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for mle_scheduler-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 379528244aa65e79637b76564ad3dbad08da920deb4643893edd29452e951cda
MD5 f7dcb6a8e6e55a9720474fdb9be7f833
BLAKE2b-256 ba89a2b67549a55cb005646e617d2ae9d6aaa2d9e6799690406a05886e478a4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page