Skip to main content

ML-Ekosystem

Project description

mleko: Streamlining Machine Learning Pipelines in Python

Simplify and accelerate your machine learning development with mleko. Designed with modularity and customization in mind, it seamlessly integrates into your existing workflows. Its robust caching system optimizes performance, taking you from data ingestion to finalized models with unparalleled efficiency.

Developed at Klarna License Static Badge

Latest Status PyPI - Downloads Python Version

Tests pre-commit Black

Features

mleko is engineered to address the end-to-end needs of machine learning pipelines, providing robust, scalable solutions for data science challenges:

  • Ingest: Seamlessly integrates with data sources like AWS S3 and Kaggle, offering hassle-free data ingestion and compatibility.
  • Export: Supports exporting data to various formats and platforms, locally or in the cloud, to ensure that your data is accessible and shareable.
  • Convert: Specializes in data format transformations, prominently featuring high-performance conversions from CSV to Vaex DataFrame, to make your data pipeline-ready.
  • Split: Employs sophisticated data partitioning algorithms, allowing you to segment DataFrames into train, test, and validation sets for effective model training and evaluation. -Filter: Provides a suite of filtering techniques such as resampling or simple expression-based filtering, enabling you to focus on the most relevant data.
  • Feature Selection: Equipped with a suite of feature selection techniques, mleko enables model performance by focusing on the most impactful variables.
  • Transformation: Facilitates data manipulations such as Frequency Encoding and Standardization, ensuring that your data conforms to the prerequisites of the machine learning algorithms.
  • Model: Provides a core set of functionalities for machine learning models, including in-built support for hyperparameter tuning, thereby streamlining the path from data to deployable model.
  • Pipeline: Unifies the entire workflow into an intuitive directed acyclic graph (DAG) architecture, promoting reproducibility and reducing iteration time and time-to-market for machine learning models.

By integrating these features, mleko serves as a comprehensive toolkit for machine learning practitioners looking to build robust models efficiently.

Installation

You can install mleko via pip from PyPI:

$ pip install mleko

Usage & Examples

See the documentation for more information or check out the usage examples on well-known datasets like the Titanic Dataset.

Issues

If you encounter any problems, please file an issue along with a detailed description.

Contributing

We are open to, and grateful for, any contributions made by the community. To learn more, see the Contributor Guide.

Release History

See our changelog.

Acknowledgements

The development of mleko was influenced by existing work of the following individuals:

Their insights and contributions provided a solid foundation for this library. We appreciate their effort and recognize their contributions that led to the creation of mleko.

License

Copyright © 2024 Klarna Bank AB

For license details, see the LICENSE file in the root of this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mleko-4.3.0.tar.gz (83.8 kB view details)

Uploaded Source

Built Distribution

mleko-4.3.0-py3-none-any.whl (134.2 kB view details)

Uploaded Python 3

File details

Details for the file mleko-4.3.0.tar.gz.

File metadata

  • Download URL: mleko-4.3.0.tar.gz
  • Upload date:
  • Size: 83.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for mleko-4.3.0.tar.gz
Algorithm Hash digest
SHA256 15fd1c1384c2bf55b337a1fea7b56562a570b005140bfbb807164bdcafeb6a7d
MD5 164bea1a23a2e609670a5a8522eb9bf1
BLAKE2b-256 38a9356215c7d722cebd0d318839af405c03678c8fc9f4eda11ed0f655d6f16d

See more details on using hashes here.

File details

Details for the file mleko-4.3.0-py3-none-any.whl.

File metadata

  • Download URL: mleko-4.3.0-py3-none-any.whl
  • Upload date:
  • Size: 134.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for mleko-4.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 26e7950801de19d4b91b5a2602cd0b946e1254ac8964dbd04277514b7a756c3d
MD5 056d89e47f9785dfa1c6acab30f51639
BLAKE2b-256 3427051738743f53eb8db34c261af88698b4c9b04e429bcb4ac4d86a98bf6671

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page