Machine Learning Ensemble Library
Project description
A library for memory efficient parallelized Ensemble learning
- Documentation available at:
Contact
For questions and comments reach out to sebastianflennerhag@hotmail.com.
This project is hosted at https://github.com/flennerhag/mlens
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mlens-0.1.4.tar.gz
(163.6 kB
view details)
Built Distribution
mlens-0.1.4-py2.py3-none-any.whl
(204.1 kB
view details)
File details
Details for the file mlens-0.1.4.tar.gz
.
File metadata
- Download URL: mlens-0.1.4.tar.gz
- Upload date:
- Size: 163.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1e62426f020d7393ac2078e382b3905c4632c109d80f1caee397616b9209382e |
|
MD5 | 5cf8914d797ef5a6d042ad17317f17d5 |
|
BLAKE2b-256 | fac8a13ebc2eacd67d7e8168f72027696cbe41d46d283005ec77a0cb4f57db05 |
File details
Details for the file mlens-0.1.4-py2.py3-none-any.whl
.
File metadata
- Download URL: mlens-0.1.4-py2.py3-none-any.whl
- Upload date:
- Size: 204.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3d21ae47b1c5235dace8811275299c5e6e875b01265e98af0365016e990101c3 |
|
MD5 | a94ad4468a01e2eb5033465b41d8e87f |
|
BLAKE2b-256 | 0e961f67f0562262f93d9ad799c5424d7b35765c201e93cd0551c4bbb122cbcd |