Skip to main content

A collection of core machine learning tools

Project description

K-Scale Open Source Robotics

License Discord Wiki
python pytorch black ruff
Python Checks


mlfab

What is this?

This is a framework for trying out machine learning ideas.

Getting Started

Install the package using:

pip install mlfab

Or, to install the latest branch:

pip install 'mlfab @ git+https://github.com/kscalelabs/mlfab.git@master'

Simple Example

This framework provides an abstraction for quickly implementing and training PyTorch models. The workhorse for doing this is mlfab.Task, which wraps all of the training logic into a single cohesive unit. We can override functions on that method to get special functionality, but the default functionality is often good enough. Here's an example for training an MNIST model:

from dataclasses import dataclass

import torch.nn.functional as F
from dpshdl.dataset import Dataset
from dpshdl.impl.mnist import MNIST
from torch import Tensor, nn
from torch.optim.optimizer import Optimizer

import mlfab


@dataclass
class Config(mlfab.Config):
    in_dim: int = mlfab.field(1, help="Number of input dimensions")


class MnistClassification(mlfab.Task[Config]):
    def __init__(self, config: Config) -> None:
        super().__init__(config)

        self.model = nn.Sequential(
            nn.Conv2d(config.in_dim, 32, 3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.Conv2d(32, 32, 3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 7 * 7, 128),
            nn.BatchNorm1d(128),
            nn.ReLU(),
            nn.Linear(128, 10),
        )

    def set_loggers(self) -> None:
        self.add_logger(
            mlfab.StdoutLogger(),
            mlfab.TensorboardLogger(self.exp_dir),
        )

    def get_dataset(self, phase: mlfab.Phase) -> MNIST:
        root_dir = mlfab.get_data_dir() / "mnist"
        return MNIST(root_dir=root_dir, train=phase == "train")

    def build_optimizer(self) -> Optimizer:
        return mlfab.Adam.get(self, lr=1e-3)

    def forward(self, x: Tensor) -> Tensor:
        return self.model(x)

    def get_loss(self, batch: tuple[Tensor, Tensor], state: mlfab.State) -> Tensor:
        x_bhw, y_b = batch
        x_bchw = (x_bhw.float() / 255.0).unsqueeze(1)
        yhat_bc = self(x_bchw)
        self.log_step(batch, yhat_bc, state)
        return F.cross_entropy(yhat_bc, y_b)

    def log_valid_step(self, batch: tuple[Tensor, Tensor], output: Tensor, state: mlfab.State) -> None:
        (x_bhw, y_b), yhat_bc = batch, output

        def get_label_strings() -> list[str]:
            ypred_b = yhat_bc.argmax(-1)
            return [f"ytrue={y_b[i]}, ypred={ypred_b[i]}" for i in range(len(y_b))]

        self.log_labeled_images("images", lambda: (x_bhw, get_label_strings()))


if __name__ == "__main__":
    # python -m examples.mnist
    MnistClassification.launch(Config(batch_size=16))

Let's break down each part individually.

Config

Tasks are parametrized using a config dataclass. The ml.field function is a lightweight wrapper around dataclasses.field which is a bit more ergonomic, and ml.Config is a bigger dataclass which contains a bunch of other options for configuring training.

@dataclass
class Config(mlfab.Config):
    in_dim: int = mlfab.field(1, help="Number of input dimensions")

Model

All tasks should subclass ml.Task and override the generic Config with the task-specific config. This is very important, not just because it makes your life easier by working nicely with your typechecker, but because the framework looks at the generic type when resolving the config for the given task.

class MnistClassification(mlfab.Task[Config]):
    def __init__(self, config: Config) -> None:
        super().__init__(config)

        self.model = nn.Sequential(
            nn.Conv2d(config.in_dim, 32, 3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.Conv2d(32, 32, 3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 7 * 7, 128),
            nn.BatchNorm1d(128),
            nn.ReLU(),
            nn.Linear(128, 10),
        )

Loggers

mlfab supports logging to multiple downstream loggers, and provides a bunch of helper functions for doing common logging operations, like rate limiting, converting image resolution to normal sizes, overlaying captions on images, and more.

If this function is not overridden, the task will just log to stdout.

def set_loggers(self) -> None:
    self.add_logger(
        mlfab.StdoutLogger(),
        mlfab.TensorboardLogger(self.exp_dir),
    )

Datasets

The task should return the dataset used for training, based on the phase. ml.Phase is a string literal with values in ["train", "valid", "test"]. mlfab.get_data_dir() returns the data directory, which can be set in a configuration file which lives in ~/.mlfab.yml. The default configuration file will be written on first run if it doesn't exist yet.

def get_dataset(self, phase: mlfab.Phase) -> Dataset[tuple[Tensor, Tensor]]:
    root_dir = mlfab.get_data_dir() / "mnist"
    return MNIST(root_dir=root_dir, train=phase == "train")

Optimizers

def build_optimizer(self) -> Optimizer:
    return mlfab.Adam.get(self, lr=1e-3)

Compute Loss

Each mlfab model should either implement the forward function, which should take a batch from the dataset and return the loss, or, if more control is desired, the get_loss function can be overridden.

def forward(self, x: Tensor) -> Tensor:
    return self.model(x)

def get_loss(self, batch: tuple[Tensor, Tensor], state: mlfab.State) -> Tensor:
    x_bhw, y_b = batch
    x_bchw = (x_bhw.float() / 255.0).unsqueeze(1)
    yhat_bc = self(x_bchw)
    self.log_step(batch, yhat_bc, state)
    return F.cross_entropy(yhat_bc, y_b)

Logging

When we call log_step in the get_loss function, it delegates to either log_train_step, log_valid_step or log_test_step, depending on what state.phase is. In this case, on each validation step we log images of the MNIST digits with the labels that our model predicts.

def log_valid_step(self, batch: tuple[Tensor, Tensor], output: Tensor, state: mlfab.State) -> None:
    (x_bhw, y_b), yhat_bc = batch, output

    def get_label_strings() -> list[str]:
        ypred_b = yhat_bc.argmax(-1)
        return [f"ytrue={y_b[i]}, ypred={ypred_b[i]}" for i in range(len(y_b))]

    self.log_labeled_images("images", lambda: (x_bhw, get_label_strings()))

Running

We can launch a training job using the launch class method. The config can be a Config object, or it can be the path to a config.yaml file located in the same directory as the task file. You can additionally provide the launcher argument, which supports training the model across multiple GPUs or nodes.

if __name__ == "__main__":
    MnistClassification.launch(Config(batch_size=16))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlfab-0.1.15.tar.gz (172.4 kB view details)

Uploaded Source

Built Distribution

mlfab-0.1.15-py3-none-any.whl (203.9 kB view details)

Uploaded Python 3

File details

Details for the file mlfab-0.1.15.tar.gz.

File metadata

  • Download URL: mlfab-0.1.15.tar.gz
  • Upload date:
  • Size: 172.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for mlfab-0.1.15.tar.gz
Algorithm Hash digest
SHA256 16f689ac4aa5b91138c449b055e669d3e322c3e1a0085472af30be0d87954af5
MD5 0bea482ef33cc10000cc8cd1feced8a7
BLAKE2b-256 aa0b96e42122966dcf6d16586ec35a4989520aaff109a66e9f2ad07707de3c3e

See more details on using hashes here.

File details

Details for the file mlfab-0.1.15-py3-none-any.whl.

File metadata

  • Download URL: mlfab-0.1.15-py3-none-any.whl
  • Upload date:
  • Size: 203.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for mlfab-0.1.15-py3-none-any.whl
Algorithm Hash digest
SHA256 9dd3ef678df543a8a1eff11aa53fd7931efa58d73b20f5a66c4d4ce9c34c9341
MD5 84000f58d9f9ee4d4e7b4b6e84395e49
BLAKE2b-256 86cfbe729bd4bb55a9b62f21f3991f8a92ab391e27d86fd3f2cf4f7abf763ee5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page