Skip to main content

Mlflow plugin to use MongoDB as backend for MLflow Model Registry service

Project description

mlflow-tracking-mongostore

Mlflow plugin to use MongoDB as a backend for the MLflow tracking service. To use this plugin, you need a running instance of MongoDB.

Run 'pip install mlflow-tracking-mongostore' to register the plugin as an entrypoint with MongoDB backend.

Installation

pip install mlflow-tracking-mongostore

Usage

mlflow server --backend-store-uri mongodb://USER:PASSWORD@MONGO_HOST:DB_NAME

OR

mlflow server --backend-store-uri mongodb+srv://USER:PASSWORD@$MONGO_HOST:DB_NAME

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file mlflow_registry_mongostore-0.1.11-py3-none-any.whl.

File metadata

File hashes

Hashes for mlflow_registry_mongostore-0.1.11-py3-none-any.whl
Algorithm Hash digest
SHA256 cfc0479845dcfbda5bfb352e33e3cf011f3e26b2df2b0a8e1594427ce391e284
MD5 092d067e6a65946726c161c08d0374b9
BLAKE2b-256 98261f4982a776ecb5bc1edd1cf90eb80435bff3db17f4dcd453d87bfe7a0887

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page