Skip to main content

MLflow: An ML Workflow Tool

Project description

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud). MLflow’s current components are:

  • MLflow Tracking: An API to log parameters, code, and results in machine learning experiments and compare them using an interactive UI.

  • MLflow Projects: A code packaging format for reproducible runs using Conda and Docker, so you can share your ML code with others.

  • MLflow Models: A model packaging format and tools that let you easily deploy the same model (from any ML library) to batch and real-time scoring on platforms such as Docker, Apache Spark, Azure ML and AWS SageMaker.

  • MLflow Model Registry: A centralized model store, set of APIs, and UI, to collaboratively manage the full lifecycle of MLflow Models.

Latest Docs Build Status Latest Python Release Latest Conda Release Latest CRAN Release Maven Central Apache 2 License Total Downloads

Installing

Install MLflow from PyPI via pip install mlflow

MLflow requires conda to be on the PATH for the projects feature.

Nightly snapshots of MLflow master are also available here.

Documentation

Official documentation for MLflow can be found at https://mlflow.org/docs/latest/index.html.

Community

For help or questions about MLflow usage (e.g. “how do I do X?”) see the docs or Stack Overflow.

To report a bug, file a documentation issue, or submit a feature request, please open a GitHub issue.

For release announcements and other discussions, please subscribe to our mailing list (mlflow-users@googlegroups.com) or join us on Slack at https://tinyurl.com/mlflow-slack.

Running a Sample App With the Tracking API

The programs in examples use the MLflow Tracking API. For instance, run:

python examples/quickstart/mlflow_tracking.py

This program will use MLflow Tracking API, which logs tracking data in ./mlruns. This can then be viewed with the Tracking UI.

Launching the Tracking UI

The MLflow Tracking UI will show runs logged in ./mlruns at http://localhost:5000. Start it with:

mlflow ui

Note: Running mlflow ui from within a clone of MLflow is not recommended - doing so will run the dev UI from source. We recommend running the UI from a different working directory, specifying a backend store via the --backend-store-uri option. Alternatively, see instructions for running the dev UI in the contributor guide.

Running a Project from a URI

The mlflow run command lets you run a project packaged with a MLproject file from a local path or a Git URI:

mlflow run examples/sklearn_elasticnet_wine -P alpha=0.4

mlflow run https://github.com/mlflow/mlflow-example.git -P alpha=0.4

See examples/sklearn_elasticnet_wine for a sample project with an MLproject file.

Saving and Serving Models

To illustrate managing models, the mlflow.sklearn package can log scikit-learn models as MLflow artifacts and then load them again for serving. There is an example training application in examples/sklearn_logistic_regression/train.py that you can run as follows:

$ python examples/sklearn_logistic_regression/train.py
Score: 0.666
Model saved in run <run-id>

$ mlflow models serve --model-uri runs:/<run-id>/model

$ curl -d '{"columns":[0],"index":[0,1],"data":[[1],[-1]]}' -H 'Content-Type: application/json'  localhost:5000/invocations

Contributing

We happily welcome contributions to MLflow. Please see our contribution guide for details.

Project details


Release history Release notifications | RSS feed

This version

1.7.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlflow-1.7.0.tar.gz (15.8 MB view details)

Uploaded Source

Built Distribution

mlflow-1.7.0-py2-none-any.whl (16.0 MB view details)

Uploaded Python 2

File details

Details for the file mlflow-1.7.0.tar.gz.

File metadata

  • Download URL: mlflow-1.7.0.tar.gz
  • Upload date:
  • Size: 15.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/2.7

File hashes

Hashes for mlflow-1.7.0.tar.gz
Algorithm Hash digest
SHA256 1fdc53758d127b6041f6729d06459b35cfd4c9186810c5bfceb2d5a202b2c911
MD5 bf3e84cfd675c34da00787f1b5acdf03
BLAKE2b-256 1261a5254bf46401fa86dbf08c3b8f595019bed333dea4df4904971502cbce8e

See more details on using hashes here.

File details

Details for the file mlflow-1.7.0-py2-none-any.whl.

File metadata

  • Download URL: mlflow-1.7.0-py2-none-any.whl
  • Upload date:
  • Size: 16.0 MB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/2.7

File hashes

Hashes for mlflow-1.7.0-py2-none-any.whl
Algorithm Hash digest
SHA256 e70cbfa71e5e89562598a4a36eea8dc34823ad642a6cf04efd50cdf14656b061
MD5 d02247f438ba7e469e0d45c92da6f91e
BLAKE2b-256 1cd2a51d954e561ca759d017aa04d76c1e23f280a0ba1b7b8f4819d93ee23e04

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page