Skip to main content

MLflow: A Platform for ML Development and Productionization

Project description

MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud). MLflow’s current components are:

  • MLflow Tracking: An API to log parameters, code, and results in machine learning experiments and compare them using an interactive UI.

  • MLflow Projects: A code packaging format for reproducible runs using Conda and Docker, so you can share your ML code with others.

  • MLflow Models: A model packaging format and tools that let you easily deploy the same model (from any ML library) to batch and real-time scoring on platforms such as Docker, Apache Spark, Azure ML and AWS SageMaker.

  • MLflow Model Registry: A centralized model store, set of APIs, and UI, to collaboratively manage the full lifecycle of MLflow Models.

Latest Docs Apache 2 License Total Downloads Slack Account Twitter

Packages

PyPI

PyPI - mlflow PyPI - mlflow-skinny

conda-forge

Conda - mlflow Conda - mlflow-skinny

CRAN

CRAN - mlflow

Maven Central

Maven Central - mlflow-client Maven Central - mlflow-parent Maven Central - mlflow-scoring Maven Central - mlflow-spark

Job Statuses

Examples Action Status cross-version-tests r-devel test-requirements stale push-images

Installing

Install MLflow from PyPI via pip install mlflow

MLflow requires conda to be on the PATH for the projects feature.

Nightly snapshots of MLflow master are also available here.

Install a lower dependency subset of MLflow from PyPI via pip install mlflow-skinny Extra dependencies can be added per desired scenario. For example, pip install mlflow-skinny pandas numpy allows for mlflow.pyfunc.log_model support.

Documentation

Official documentation for MLflow can be found at https://mlflow.org/docs/latest/index.html.

Roadmap

The current MLflow Roadmap is available at https://github.com/mlflow/mlflow/milestone/3. We are seeking contributions to all of our roadmap items with the help wanted label. Please see the Contributing section for more information.

Community

For help or questions about MLflow usage (e.g. “how do I do X?”) see the docs or Stack Overflow.

To report a bug, file a documentation issue, or submit a feature request, please open a GitHub issue.

For release announcements and other discussions, please subscribe to our mailing list (mlflow-users@googlegroups.com) or join us on Slack.

Running a Sample App With the Tracking API

The programs in examples use the MLflow Tracking API. For instance, run:

python examples/quickstart/mlflow_tracking.py

This program will use MLflow Tracking API, which logs tracking data in ./mlruns. This can then be viewed with the Tracking UI.

Launching the Tracking UI

The MLflow Tracking UI will show runs logged in ./mlruns at http://localhost:5000. Start it with:

mlflow ui

Note: Running mlflow ui from within a clone of MLflow is not recommended - doing so will run the dev UI from source. We recommend running the UI from a different working directory, specifying a backend store via the --backend-store-uri option. Alternatively, see instructions for running the dev UI in the contributor guide.

Running a Project from a URI

The mlflow run command lets you run a project packaged with a MLproject file from a local path or a Git URI:

mlflow run examples/sklearn_elasticnet_wine -P alpha=0.4

mlflow run https://github.com/mlflow/mlflow-example.git -P alpha=0.4

See examples/sklearn_elasticnet_wine for a sample project with an MLproject file.

Saving and Serving Models

To illustrate managing models, the mlflow.sklearn package can log scikit-learn models as MLflow artifacts and then load them again for serving. There is an example training application in examples/sklearn_logistic_regression/train.py that you can run as follows:

$ python examples/sklearn_logistic_regression/train.py
Score: 0.666
Model saved in run <run-id>

$ mlflow models serve --model-uri runs:/<run-id>/model

$ curl -d '{"dataframe_split": {"columns":[0],"index":[0,1],"data":[[1],[-1]]}}' -H 'Content-Type: application/json'  localhost:5000/invocations

Note: If using MLflow skinny (pip install mlflow-skinny) for model serving, additional required dependencies (namely, flask) will need to be installed for the MLflow server to function.

Official MLflow Docker Image

The official MLflow Docker image is available on GitHub Container Registry at https://ghcr.io/mlflow/mlflow.

export CR_PAT=YOUR_TOKEN
echo $CR_PAT | docker login ghcr.io -u USERNAME --password-stdin
# Pull the latest version
docker pull ghcr.io/mlflow/mlflow
# Pull 2.2.1
docker pull ghcr.io/mlflow/mlflow:v2.2.1

Contributing

We happily welcome contributions to MLflow. We are also seeking contributions to items on the MLflow Roadmap. Please see our contribution guide to learn more about contributing to MLflow.

Core Members

MLflow is currently maintained by the following core members with significant contributions from hundreds of exceptionally talented community members.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlflow-2.11.0.tar.gz (19.3 MB view details)

Uploaded Source

Built Distribution

mlflow-2.11.0-py3-none-any.whl (19.7 MB view details)

Uploaded Python 3

File details

Details for the file mlflow-2.11.0.tar.gz.

File metadata

  • Download URL: mlflow-2.11.0.tar.gz
  • Upload date:
  • Size: 19.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for mlflow-2.11.0.tar.gz
Algorithm Hash digest
SHA256 5fc6046a94e4269564dbeb748bb791ccb5c671a9c5c2b91ef3713c16aa614595
MD5 1d2071b0f37bd22efe9a69d1b7702547
BLAKE2b-256 1bf905a05100fce65d2913cea69b8fe7a41e418807cdefbe926b4f592e9f20cb

See more details on using hashes here.

File details

Details for the file mlflow-2.11.0-py3-none-any.whl.

File metadata

  • Download URL: mlflow-2.11.0-py3-none-any.whl
  • Upload date:
  • Size: 19.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.15

File hashes

Hashes for mlflow-2.11.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c8c7d0ff7595d71765ca7338575e76df7af020b6dc00f66b015b38488e7a763d
MD5 2d7ea7b98ab165c139a665fc7acfab3c
BLAKE2b-256 dafc1ef59c3b06c8c033bb62c2aefc66a8f69b0582f254eb99bb3b78e65dcf1d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page