Skip to main content

Scalable machine learning based time series forecasting

Project description

mlforecast

Scalable machine learning based time series forecasting.

CI Lint Python PyPi conda-forge codecov License

Install

PyPI

pip install mlforecast

Optional dependencies

If you want more functionality you can instead use pip install mlforecast[extra1,extra2,...]. The current extra dependencies are:

  • aws: adds the functionality to use S3 as the storage in the CLI.
  • cli: includes the validations necessary to use the CLI.
  • distributed: installs dask to perform distributed training. Note that you'll also need to install either LightGBM or XGBoost.

For example, if you want to perform distributed training through the CLI using S3 as your storage you'll need all three extras, which you can get using: pip install mlforecast[aws,cli,distributed].

conda-forge

conda install -c conda-forge mlforecast

Note that this installation comes with the required dependencies for the local interface. If you want to:

  • Use s3 as storage: conda install -c conda-forge s3path
  • Perform distributed training: conda install -c conda-forge dask and either LightGBM or XGBoost.

How to use

The following provides a very basic overview, for a more detailed description see the documentation.

Programmatic API

Store your time series in a pandas dataframe with an index named unique_id that identifies each time serie, a column ds that contains the datestamps and a column y with the values.

from mlforecast.utils import generate_daily_series

series = generate_daily_series(20)
display_df(series.head())
unique_id ds y
id_00 2000-01-01 00:00:00 0.264447
id_00 2000-01-02 00:00:00 1.28402
id_00 2000-01-03 00:00:00 2.4628
id_00 2000-01-04 00:00:00 3.03552
id_00 2000-01-05 00:00:00 4.04356

Then create a TimeSeries object with the features that you want to use. These include lags, transformations on the lags and date features. The lag transformations are defined as numba jitted functions that transform an array, if they have additional arguments you supply a tuple (transform_func, arg1, arg2, ...).

from mlforecast.core import TimeSeries
from window_ops.expanding import expanding_mean
from window_ops.rolling import rolling_mean

ts = TimeSeries(
    lags=[7, 14],
    lag_transforms={
        1: [expanding_mean],
        7: [(rolling_mean, 7), (rolling_mean, 14)]
    },
    date_features=['dayofweek', 'month']
)
ts
TimeSeries(freq=<Day>, transforms=['lag-7', 'lag-14', 'expanding_mean_lag-1', 'rolling_mean_lag-7_window_size-7', 'rolling_mean_lag-7_window_size-14'], date_features=['dayofweek', 'month'], num_threads=8)

Next define a model. If you want to use the local interface this can be any regressor that follows the scikit-learn API. For distributed training there are LGBMForecast and XGBForecast.

from sklearn.ensemble import RandomForestRegressor

model = RandomForestRegressor(random_state=0)

Now instantiate your forecast object with the model and the time series. There are two types of forecasters, Forecast which is local and DistributedForecast which performs the whole process in a distributed way.

from mlforecast.forecast import Forecast

fcst = Forecast(model, ts)

To compute the features and train the model using them call .fit on your Forecast object.

fcst.fit(series)
Forecast(model=RandomForestRegressor(random_state=0), ts=TimeSeries(freq=<Day>, transforms=['lag-7', 'lag-14', 'expanding_mean_lag-1', 'rolling_mean_lag-7_window_size-7', 'rolling_mean_lag-7_window_size-14'], date_features=['dayofweek', 'month'], num_threads=8))

To get the forecasts for the next 14 days call .predict(14) on the forecaster. This will update the target with each prediction and recompute the features to get the next one.

predictions = fcst.predict(14)

display_df(predictions.head())
unique_id ds y_pred
id_00 2000-08-10 00:00:00 5.24484
id_00 2000-08-11 00:00:00 6.25861
id_00 2000-08-12 00:00:00 0.225484
id_00 2000-08-13 00:00:00 1.22896
id_00 2000-08-14 00:00:00 2.30246

CLI

If you're looking for computing quick baselines, want to avoid some boilerplate or just like using CLIs better then you can use the mlforecast binary with a configuration file like the following:

!cat sample_configs/local.yaml
data:
  prefix: data
  input: train
  output: outputs
  format: parquet
features:
  freq: D
  lags: [7, 14]
  lag_transforms:
    1: 
    - expanding_mean
    7: 
    - rolling_mean:
        window_size: 7
    - rolling_mean:
        window_size: 14
  date_features: ["dayofweek", "month", "year"]
  num_threads: 2
backtest:
  n_windows: 2
  window_size: 7
forecast:
  horizon: 7
local:
  model:
    name: sklearn.ensemble.RandomForestRegressor
    params:
      n_estimators: 10
      max_depth: 7

The configuration is validated using FlowConfig.

This configuration will use the data in data.prefix/data.input to train and write the results to data.prefix/data.output both with data.format.

data_path = Path('data')
data_path.mkdir()
series.to_parquet(data_path/'train')
!mlforecast sample_configs/local.yaml
Split 1 MSE: 0.0251
Split 2 MSE: 0.0180
list((data_path/'outputs').iterdir())
[PosixPath('data/outputs/valid_1.parquet'),
 PosixPath('data/outputs/valid_0.parquet'),
 PosixPath('data/outputs/forecast.parquet')]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlforecast-0.1.0.tar.gz (26.9 kB view details)

Uploaded Source

Built Distribution

mlforecast-0.1.0-py3-none-any.whl (26.9 kB view details)

Uploaded Python 3

File details

Details for the file mlforecast-0.1.0.tar.gz.

File metadata

  • Download URL: mlforecast-0.1.0.tar.gz
  • Upload date:
  • Size: 26.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for mlforecast-0.1.0.tar.gz
Algorithm Hash digest
SHA256 6d1ee8b29a1bf526694a042b59527ca5c31adf262089d19803ea45f53132ed6f
MD5 05175706806088ba19192aef4533c48e
BLAKE2b-256 d2fd5dfbfe8d732dd088ba0e72e982604a3989abc6e299b84a9b28a4688f1c54

See more details on using hashes here.

File details

Details for the file mlforecast-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: mlforecast-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 26.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for mlforecast-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5f416df4e49095e81239466ae5f422493b86c5b89a425c105326a0bebc8d3f8e
MD5 8d58338b697cdf3c391d5d789ddb1ca9
BLAKE2b-256 196e1810c00e0fea9c43d476d3838dba3f7d85ed5bc632ce99c2abd426e8259d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page