Skip to main content

Library to compare machine learning methods across datasets

Project description

mlgauge

Build Formatting Code style: black Documentation Status License: MIT

A simple library to benchmark performance of machine learning methods across different datasets. mlgauge is also a wrapper around PMLB and OpenML which provide benchmark datasets for machine learning.

mlgauge can help you if

  • You are developing a machine learning method or an automl system and want to compare and analyze how it performs against other methods.
  • You are learning different machine learning methods and would like to understand how different methods behave under different conditions.

Checkout the documentation to learn more.

Installation

pip install mlgauge

Usage

This is the workflow for setting up and running a comparison benchmark with mlgauge:

  1. Set up your methods by defining a Method class. If your method follows the sklearn API, you can directly use the SklearnMethod which provides a typical sklearn workflow for estimators.
  2. Set up the experiments with the Analysis class.
  3. Collect the results for further comparative analysis.

Example

from mlgauge import Analysis, SklearnMethod
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from catboost import CatBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
import matplotlib.pyplot as plt

SEED = 42

methods = [
    ("xgboost", SklearnMethod(XGBClassifier(n_jobs=-1,verbose=0), ["accuracy", "f1_micro"])),
    ("lightgbm", SklearnMethod(LGBMClassifier(n_jobs=-1,verbose=0), ["accuracy", "f1_micro"])),
    ("catboost", SklearnMethod(CatBoostClassifier(thread_count=-1,verbose=0), ["accuracy", "f1_micro"])),
    ("gbm", SklearnMethod(GradientBoostingClassifier(verbose=0), ["accuracy", "f1_micro"])),
]

an = Analysis(
    methods=methods,
    metric_names=["accuracy", "f1 score"],
    datasets="classification",
    n_datasets=10,
    random_state=SEED,
)
an.run()

print(an.get_result_as_df("f1 score"))
                          xgboost  lightgbm  catboost       gbm
datasets
mfeat_morphological      0.674000  0.682000  0.698000  0.700000
labor                    0.800000  0.733333  0.866667  0.800000
analcatdata_aids         0.769231  0.384615  0.538462  0.692308
mofn_3_7_10              1.000000  0.990937  1.000000  1.000000
flags                    0.444444  0.377778  0.355556  0.400000
analcatdata_creditscore  1.000000  1.000000  1.000000  1.000000
mfeat_morphological      0.674000  0.682000  0.698000  0.700000
penguins                 0.988095  0.976190  0.988095  0.988095
glass                    0.730769  0.673077  0.692308  0.711538
iris                     0.973684  0.973684  0.973684  0.973684
an.plot_results("f1 score")

boosting plot

More examples are available in the documentation.

Credits

Logo designed by the talented Neha Balasundaram.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlgauge-0.3.3.tar.gz (12.1 kB view details)

Uploaded Source

Built Distribution

mlgauge-0.3.3-py3-none-any.whl (12.0 kB view details)

Uploaded Python 3

File details

Details for the file mlgauge-0.3.3.tar.gz.

File metadata

  • Download URL: mlgauge-0.3.3.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for mlgauge-0.3.3.tar.gz
Algorithm Hash digest
SHA256 1a7f85d0e68f196e76603955ff1e795793cce287421188a7acb44b2cfaad0fa0
MD5 47eba9a71d61b1d6af9e3c1b9d576707
BLAKE2b-256 5a738b09d3cd2ccd110debd921172315eccbd7b64c307148e32a08916162703e

See more details on using hashes here.

File details

Details for the file mlgauge-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: mlgauge-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 12.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for mlgauge-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 35f004a3af74c1b017f83ec79c3764bc7db844d8b9e3079871eaf7632d766349
MD5 352d9a91f1cd8a8900c74e30af766268
BLAKE2b-256 b2990f551dd310c249440635f7928aece40cbe2c198e71b64b6dd510832512b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page