Skip to main content

This package provides helper utilities for machine learning tasks. One major utility is calculation of weight of evidence

Project description

Machine Learning Helper

This package usage multiple algorithms and parameters to accomodate different set of use cases to help in creating multiple machine learning algorithms.

1.0 woe (Weight of Evidence):

This function will help to calculate Weight of Evidence and Information Value, the charts can be displayed and coarse classing can also be done.

1.1 Parameters:


  • max_bin: int Maximum number of bins for numeric variables. The default is 10
  • iv_threshold: float Threshold value for Information Value. Variables with higher than threshold will be considered for transformation
  • ignore_threshold: Boolean This parameter controls whether the defined threshold should be considered or ignored. The default is 'True'

1.2 Returns:

DataFrame having weight of evidence of each column along with the target variable


1.3 Approach:

  1. Create an instance of woe my_woe = woe()

  2. Call fit method on the defined object by passing on dataframe and the target variable name my_woe.fit(df,target)

  3. Call the transform method transformed_df = my_woe.transform()


Example

Create Sample DataFrame

from mlh import woe
import pandas as pd
import numpy as np
import random

seed=1456
np.random.seed(seed)
random.seed(seed)
rows = 1000
y = random.choices([0,1],k=rows,weights=[.7,.3])
x1 = random.choices(np.arange(20,40),k=rows)
x2 = np.random.randint(1000,2000,size=rows)
x3 = random.choices(np.arange(1,100),k=rows)
x4 = random.choices(['m','f','u'],k=rows)
x5 = random.choices(['a','b','c','d','e','f','g','h'],k=rows)
df = pd.DataFrame({'y':y,'x1':x1,'x2':x2,'x3':x3,'x4':x4,'x5':x5})
df.head()

Fitting and prediction

Create Instance of Weight of Evidence Package

my_woe = woe()

Fit the data with created instance

my_woe.fit(df,'y')

Display the relevant charts

my_woe.getWoeCharts()

Merge values of X3 Variable at 1 and 2 indices using the Weight of Evidence chart from the first Iteration

my_woe.reset_woe(2,(1,2),1)

Get latest Iteration Information Value

my_woe.get_IV()

Replace the original values in the Dataframe with Weight of Evidence

transformed_df = my_woe.transform()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlh-0.0.3.tar.gz (2.6 kB view details)

Uploaded Source

Built Distribution

mlh-0.0.3-py3-none-any.whl (2.3 kB view details)

Uploaded Python 3

File details

Details for the file mlh-0.0.3.tar.gz.

File metadata

  • Download URL: mlh-0.0.3.tar.gz
  • Upload date:
  • Size: 2.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for mlh-0.0.3.tar.gz
Algorithm Hash digest
SHA256 a5b5932f024897de5c62278d8752a211afb6d10c323c3f501e615778a7e9c1cf
MD5 97ce11709be623c93e53bb21bbb077cf
BLAKE2b-256 2543d277132e200d31b3855a18fcd3d0c27a4ef2bfd8ae5d520bfcc76e90bc86

See more details on using hashes here.

File details

Details for the file mlh-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: mlh-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 2.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for mlh-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 5cb910039198426c916a65f4e9b0ea91d06dea20384981bd095b1fbdb39d5f07
MD5 7a0bd41b37225880233905039f252b37
BLAKE2b-256 8c0842b9a948b0de8428a3e40e5ae8126a98535257e6aab3e11394da070168a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page