Skip to main content

This package provides helper utilities for machine learning tasks. One major utility is calculation of weight of evidence

Project description

Machine Learning Helper

This package usage multiple algorithms and parameters to accomodate different set of use cases to help in creating multiple machine learning algorithms.

1.0 woe (Weight of Evidence):

This function will help to calculate Weight of Evidence and Information Value, the charts can be displayed and coarse classing can also be done.

1.1 Parameters:


  • max_bin: int Maximum number of bins for numeric variables. The default is 10
  • iv_threshold: float Threshold value for Information Value. Variables with higher than threshold will be considered for transformation
  • ignore_threshold: Boolean This parameter controls whether the defined threshold should be considered or ignored. The default is 'True'

1.2 Returns:

DataFrame having weight of evidence of each column along with the target variable


1.3 Approach:

  1. Create an instance of woe my_woe = woe()

  2. Call fit method on the defined object by passing on dataframe and the target variable name my_woe.fit(df,target)

  3. Call the transform method transformed_df = my_woe.transform()


Example

Create Sample DataFrame

from mlh import woe
import pandas as pd
import numpy as np
import random

seed=1456
np.random.seed(seed)
random.seed(seed)
rows = 1000
y = random.choices([0,1],k=rows,weights=[.7,.3])
x1 = random.choices(np.arange(20,40),k=rows)
x2 = np.random.randint(1000,2000,size=rows)
x3 = random.choices(np.arange(1,100),k=rows)
x4 = random.choices(['m','f','u'],k=rows)
x5 = random.choices(['a','b','c','d','e','f','g','h'],k=rows)
df = pd.DataFrame({'y':y,'x1':x1,'x2':x2,'x3':x3,'x4':x4,'x5':x5})
df.head()

Fitting and prediction

Create Instance of Weight of Evidence Package

my_woe = woe()

Fit the data with created instance

my_woe.fit(df,'y')

Display the relevant charts

my_woe.getWoeCharts()

Merge values of X3 Variable at 1 and 2 indices using the Weight of Evidence chart from the first Iteration

my_woe.reset_woe(2,(1,2),1)

Get latest Iteration Information Value

my_woe.get_IV()

Replace the original values in the Dataframe with Weight of Evidence

transformed_df = my_woe.transform()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlh-0.0.5.tar.gz (19.5 kB view details)

Uploaded Source

Built Distribution

mlh-0.0.5-py3-none-any.whl (22.3 kB view details)

Uploaded Python 3

File details

Details for the file mlh-0.0.5.tar.gz.

File metadata

  • Download URL: mlh-0.0.5.tar.gz
  • Upload date:
  • Size: 19.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for mlh-0.0.5.tar.gz
Algorithm Hash digest
SHA256 b09b1248ba2050d1633e8e3be8d70c1657dc55a23db66a0d5cbe82d02d9570ee
MD5 e712439a4e1a0b355f08d7961737938d
BLAKE2b-256 d1fa4c1f407ac17ef861b62eff438662bb1764640b9e7c8461832c70c73abb7c

See more details on using hashes here.

File details

Details for the file mlh-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: mlh-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 22.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for mlh-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b5b2a9c1e1dd61540e6832000201182847cdafa96485c1dc30505ca588133e11
MD5 69002c2cd8a78d227e598ee475ad51b1
BLAKE2b-256 72b447936b48b4a15f74cc997f40eb1d647b5da9a3acdc739f2892101a5cf8e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page