Skip to main content

This package provides helper utilities for machine learning tasks. One major utility is calculation of weight of evidence

Project description

Machine Learning Helper

This package usage multiple algorithms and parameters to accomodate different set of use cases to help in creating multiple machine learning algorithms.

1.0 woe (Weight of Evidence):

This function will help to calculate Weight of Evidence and Information Value, the charts can be displayed and coarse classing can also be done.

1.1 Parameters:


  • max_bin: int Maximum number of bins for numeric variables. The default is 10
  • iv_threshold: float Threshold value for Information Value. Variables with higher than threshold will be considered for transformation
  • ignore_threshold: Boolean This parameter controls whether the defined threshold should be considered or ignored. The default is 'True'

1.2 Returns:

DataFrame having weight of evidence of each column along with the target variable


1.3 Approach:

  1. Create an instance of woe my_woe = woe()

  2. Call fit method on the defined object by passing on dataframe and the target variable name my_woe.fit(df,target)

  3. Call the transform method transformed_df = my_woe.transform()


Example

Create Sample DataFrame

from mlh import woe
import pandas as pd
import numpy as np
import random

seed=1456
np.random.seed(seed)
random.seed(seed)
rows = 1000
y = random.choices([0,1],k=rows,weights=[.7,.3])
x1 = random.choices(np.arange(20,40),k=rows)
x2 = np.random.randint(1000,2000,size=rows)
x3 = random.choices(np.arange(1,100),k=rows)
x4 = random.choices(['m','f','u'],k=rows)
x5 = random.choices(['a','b','c','d','e','f','g','h'],k=rows)
df = pd.DataFrame({'y':y,'x1':x1,'x2':x2,'x3':x3,'x4':x4,'x5':x5})
df.head()

Fitting and prediction

Create Instance of Weight of Evidence Package

my_woe = woe()

Fit the data with created instance

my_woe.fit(df,'y')

Display the relevant charts

my_woe.getWoeCharts()

Merge values of X3 Variable at 1 and 2 indices using the Weight of Evidence chart from the first Iteration

my_woe.reset_woe(2,(1,2),1)

Get latest Iteration Information Value

my_woe.get_IV()

Replace the original values in the Dataframe with Weight of Evidence

transformed_df = my_woe.transform()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlh-0.0.8.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

mlh-0.0.8-py3-none-any.whl (22.0 kB view details)

Uploaded Python 3

File details

Details for the file mlh-0.0.8.tar.gz.

File metadata

  • Download URL: mlh-0.0.8.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for mlh-0.0.8.tar.gz
Algorithm Hash digest
SHA256 9d13acb7c866376b30a38037731727d87bfd78cf916435d6d55773e9937bdfd1
MD5 a518eb1f3b3673c850adfa098e598eab
BLAKE2b-256 a968812fddbc0158d9da35fc7f9d2f4a8c3d0ad687d96f9705ab553881cd4bf6

See more details on using hashes here.

File details

Details for the file mlh-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: mlh-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for mlh-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 6b2982a99133e63e7578b17f5937427b8e54cd8944966ab49b027de891cbaeea
MD5 bd0f7cbead7837f1fce03418867cbd03
BLAKE2b-256 8d7d92ccba2a0e7d4516261e00b972517ee66b2f0248d04924032900f9c66cd8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page