Skip to main content

This package provides helper utilities for machine learning tasks. One major utility is calculation of weight of evidence

Project description

Machine Learning Helper

This package usage multiple algorithms and parameters to accomodate different set of use cases to help in creating multiple machine learning algorithms.

1.0 woe (Weight of Evidence):

This function will help to calculate Weight of Evidence and Information Value, the charts can be displayed and coarse classing can also be done.

1.1 Parameters:


  • max_bin: int Maximum number of bins for numeric variables. The default is 10
  • iv_threshold: float Threshold value for Information Value. Variables with higher than threshold will be considered for transformation
  • ignore_threshold: Boolean This parameter controls whether the defined threshold should be considered or ignored. The default is 'True'

1.2 Returns:

DataFrame having weight of evidence of each column along with the target variable


1.3 Approach:

  1. Create an instance of woe my_woe = woe()

  2. Call fit method on the defined object by passing on dataframe and the target variable name my_woe.fit(df,target)

  3. Call the transform method transformed_df = my_woe.transform()


Example

Create Sample DataFrame

from mlh import woe
import pandas as pd
import numpy as np
import random

seed=1456
np.random.seed(seed)
random.seed(seed)
rows = 1000
y = random.choices([0,1],k=rows,weights=[.7,.3])
x1 = random.choices(np.arange(20,40),k=rows)
x2 = np.random.randint(1000,2000,size=rows)
x3 = random.choices(np.arange(1,100),k=rows)
x4 = random.choices(['m','f','u'],k=rows)
x5 = random.choices(['a','b','c','d','e','f','g','h'],k=rows)
df = pd.DataFrame({'y':y,'x1':x1,'x2':x2,'x3':x3,'x4':x4,'x5':x5})
df.head()

Fitting and prediction

Create Instance of Weight of Evidence Package

my_woe = woe()

Fit the data with created instance

my_woe.fit(df,'y')

Display the relevant charts

my_woe.getWoeCharts()

Merge values of X3 Variable at 1 and 2 indices using the Weight of Evidence chart from the first Iteration

my_woe.reset_woe(2,(1,2),1)

Get latest Iteration Information Value

my_woe.get_IV()

Replace the original values in the Dataframe with Weight of Evidence

transformed_df = my_woe.transform()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlh-0.1.1.tar.gz (19.8 kB view details)

Uploaded Source

Built Distribution

mlh-0.1.1-py3-none-any.whl (22.7 kB view details)

Uploaded Python 3

File details

Details for the file mlh-0.1.1.tar.gz.

File metadata

  • Download URL: mlh-0.1.1.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for mlh-0.1.1.tar.gz
Algorithm Hash digest
SHA256 b9cb471cf6b1ff8e9dcc045a9defa26560bea1fb11a3079cdfa3325bf2d95277
MD5 266a9b5553967ce28b73065770b541b7
BLAKE2b-256 1803fba6d0fd7ae464d7e94c33ed59165f9de36295676a2575971e37db4c0a22

See more details on using hashes here.

File details

Details for the file mlh-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: mlh-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 22.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for mlh-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0a762eb7ff85eb75c89cca895e7fdd5548141d337ee414ba0bf9775108b26b35
MD5 5af3a45f35a553e3ff0523ed1835df33
BLAKE2b-256 79091315e193ec62f8a01dc557331e09d5c9e84e17fc621f02f4e507899b9851

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page