Skip to main content

Extends scikit-learn with a couple of new models, transformers, metrics, plotting.

Project description

https://github.com/sdpython/mlinsights/blob/master/_doc/sphinxdoc/source/phdoc_static/project_ico.png?raw=true

mlinsights - extensions to scikit-learn

Build status Build Status Windows https://circleci.com/gh/sdpython/mlinsights/tree/master.svg?style=svg https://dev.azure.com/xavierdupre3/mlinsights/_apis/build/status/sdpython.mlinsights https://badge.fury.io/py/mlinsights.svg MIT License Requirements Status https://codecov.io/github/sdpython/mlinsights/coverage.svg?branch=master GitHub Issues Notebook Coverage Downloads Forks Stars size

mlinsights extends scikit-learn with a couple of new models, transformers, metrics, plotting. It provides new trainers such as QuantileLinearRegression which trains a linear regression with L1 norm non-linear correlation based on decision trees, or QuantileMLPRegressor a modification of scikit-learn’s MLPRegressor which trains a multi-layer perceptron with L1 norm. It also explores PredictableTSNE which trains a supervized model to replicate t-SNE results or a PiecewiseRegression which partitions the data before fitting a model on each bucket.

Function pipeline2dot converts a pipeline into a graph:

from mlinsights.plotting import pipeline2dot
dot = pipeline2dot(clf, df)
https://github.com/sdpython/mlinsights/raw/master/_doc/pipeline.png

History

current - 2020-08-06 - 0.00Mb

  • 81: Make mlinsights work with scikit-learn 0.22 and 0.23 (2020-08-06)

  • 82: Fixes #81, skl 0.22, 0.23 together (2020-08-06)

  • 79: pipeline2dot fails with ‘passthrough’ (2020-07-16)

0.2.463 - 2020-06-29 - 0.83Mb

  • 78: Removes strong dependency on pyquickhelper (2020-06-29)

0.2.450 - 2020-06-08 - 0.83Mb

  • 77: Add parameter trainable to TransferTransformer (2020-06-07)

0.2.447 - 2020-06-03 - 0.83Mb

  • 76: ConstraintKMeans does not produce convex clusters. (2020-06-03)

  • 75: Moves kmeans with constraint from papierstat. (2020-05-27)

  • 74: Fix PipelineCache after as scikti-learn 0.23 changed the way parameters is handle in pipelines (2020-05-15)

  • 73: ClassifierKMeans.__repr__ fails with scikit-learn 0.23 (2020-05-14)

  • 69: Optimizes k-means with norm L1 (2020-01-13)

0.2.360 - 2019-09-15 - 0.68Mb

  • 66: Fix visualisation graph: does not work when column index is an integer in ColumnTransformer (2019-09-15)

  • 59: Add GaussianProcesses to the notebook about confidence interval and regression (2019-09-15)

  • 65: Implements a TargetTransformClassifier similar to TargetTransformRegressor (2019-08-24)

  • 64: Implements a different version of TargetTransformRegressor which includes predefined functions (2019-08-24)

  • 63: Add a transform which transform the target and applies the inverse function of the prediction before scoring (2019-08-24)

  • 49: fix menu in documentation (2019-08-24)

0.2.312 - 2019-07-13 - 0.66Mb

  • 61: Fix bug in pipeline2dot when keyword “passthrough is used” (2019-07-11)

  • 60: Fix visualisation of pipeline which contains string “passthrough” (2019-07-09)

  • 58: Explores a way to compute recommandations without training (2019-06-05)

0.2.288 - 2019-05-28 - 0.66Mb

  • 56: Fixes #55, explore caching for scikit-learn pipeline (2019-05-22)

  • 55: Explore caching for gridsearchCV (2019-05-22)

  • 53: implements a function to extract intermediate model outputs within a pipeline (2019-05-07)

  • 51: Implements a tfidfvectorizer which keeps more information about n-grams (2019-04-26)

  • 46: implements a way to determine close leaves in a decision tree (2019-04-01)

  • 44: implements a model which produces confidence intervals based on bootstrapping (2019-03-29)

  • 40: implements a custom criterion for a decision tree optimizing for a linear regression (2019-03-28)

  • 39: implements a custom criterion for decision tree (2019-03-26)

  • 41: implements a direct call to a lapack function from cython (2019-03-25)

  • 38: better implementation of a regression criterion (2019-03-25)

0.1.199 - 2019-03-05 - 0.05Mb

  • 37: implements interaction_only for polynomial features (2019-02-26)

  • 36: add parameter include_bias to extended features (2019-02-25)

  • 34: rename PiecewiseLinearRegression into PiecewiseRegression (2019-02-23)

  • 33: implement the piecewise classifier (2019-02-23)

  • 31: uses joblib for piecewise linear regression (2019-02-23)

  • 30: explore transpose matrix before computing the polynomial features (2019-02-17)

  • 29: explore different implementation of polynomialfeatures (2019-02-15)

  • 28: implement PiecewiseLinearRegression (2019-02-10)

  • 27: implement TransferTransformer (2019-02-04)

  • 26: add function to convert a scikit-learn pipeline into a graph (2019-02-01)

  • 25: implements kind of trainable t-SNE (2019-01-31)

  • 6: use keras and pytorch (2019-01-03)

  • 22: modifies plot gallery to impose coordinates (2018-11-10)

  • 20: implements a QuantileMLPRegressor (quantile regression with MLP) (2018-10-22)

  • 19: fix issues introduced with changes in keras 2.2.4 (2018-10-06)

  • 18: remove warning from scikit-learn about cloning (2018-09-16)

  • 16: move CI to python 3.7 (2018-08-21)

  • 17: replace as_matrix by values (pandas deprecated warning) (2018-07-29)

  • 14: add transform to convert a learner into a transform (sometimes called a featurizer) (2018-06-19)

  • 13: add transform to do model stacking (2018-06-19)

  • 8: move items from papierstat (2018-06-19)

  • 12: fix bug in quantile regression: wrong weight for linear regression (2018-06-16)

  • 11: specifying quantile (2018-06-16)

  • 4: add function to compute non linear correlations (2018-06-16)

  • 10: implements combination between logistic regression and k-means (2018-05-27)

  • 9: move items from ensae_teaching_cs (2018-05-08)

  • 7: add quantile regression (2018-05-07)

  • 5: replace flake8 by code style (2018-04-14)

  • 1: change background for cells in notebooks converted into rst then in html, highlight-ipython3 (2018-01-05)

  • 2: save features and metadatas for the search engine and retrieves them (2017-12-03)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlinsights-0.2.491.tar.gz (868.0 kB view details)

Uploaded Source

Built Distribution

mlinsights-0.2.491-cp37-cp37m-win_amd64.whl (505.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

File details

Details for the file mlinsights-0.2.491.tar.gz.

File metadata

  • Download URL: mlinsights-0.2.491.tar.gz
  • Upload date:
  • Size: 868.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for mlinsights-0.2.491.tar.gz
Algorithm Hash digest
SHA256 e0188bc1a73cc596ad45d758b176f4cc60fce7524d0928cc83502e2e6bd5bf95
MD5 ed60c07376d982ef90fc6617fc40fbe2
BLAKE2b-256 3fcc415071ca823103889c3c29ec2daa3b27034c3ba42501b9c4bd0210b6b401

See more details on using hashes here.

File details

Details for the file mlinsights-0.2.491-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for mlinsights-0.2.491-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d36d30bed172f173c5f4167821540852752b71af8e172115037243531b478aee
MD5 6e2399adfe0ff34957fb50463b82b87e
BLAKE2b-256 536588ef875cff26298c202312bc199ca561f55eac39d8e7913dc6cff08b3fc3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page