Skip to main content

ML inference tools

Project description

ML inference tools

Requirements

For model export onnx package is required.

Convert to ONNX

Below are some examples:

Convert t5-small:

PYTHONPATH=. python mlit to-onnx --model-type t5 --model-name t5-small --export-dir tmp

Check that it is working:

PYTHONPATH=. python mlit inference --model-name t5-small --base-dir tmp --model-input "translate English to French: How does this model work?" --model-type t5

Convert custom checkpoint:

PYTHONPATH=. python mlit to-onnx --model-type t5 --model-name "../my_custom_model" --export-dir tmp

Check that it is working:

PYTHONPATH=. python mlit inference --model-name my_custom_model --base-dir tmp --model-input "translate English to French: How does this model work?" --model-type t5 --tokenizer-name "t5-small"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlit-0.1.2.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

mlit-0.1.2-py3-none-any.whl (12.4 kB view details)

Uploaded Python 3

File details

Details for the file mlit-0.1.2.tar.gz.

File metadata

  • Download URL: mlit-0.1.2.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.7

File hashes

Hashes for mlit-0.1.2.tar.gz
Algorithm Hash digest
SHA256 dc9a4fc052dfeba7b3dff9aea60b3dad2e689fdfe5a4262dce2568711f9f1d7e
MD5 c0d3c8861eaeb93aa8a9a25df6cf4058
BLAKE2b-256 0e9a10b215972e6a4cd3c5cd67be8d419f68396aef5da5e09374e8fdc0da5779

See more details on using hashes here.

File details

Details for the file mlit-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: mlit-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 12.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.8.7

File hashes

Hashes for mlit-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 843ff1f228af2bb369bc8c0215af2f5c4800f28b9ad2c24fb4c2f2a157a013ea
MD5 ca1864dde190ca5eedf0683b21bd13fe
BLAKE2b-256 10a4ed3154a6eaa4422cc815ef00eb91f78a4657c2fdc9ab35c0bceb023a8afd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page