Skip to main content

Machine Learning key utilities

Project description

mlky

Because it's the only Way.

What is mlky?

mlky is a versatile Python configuration software package designed by data scientists at the Jet Propulsion Laboratory to cater to the needs of research projects and machine learning pipelines. Originally conceived as a collection of utility scripts and functions, mlky has evolved into a comprehensive configuration package that prioritizes flexibility, robustness, and scalability.

Installation

You can install mlky using pip:

pip install mlky

Or via Conda:

conda install -c jammont mlky

Features

  • Configuration Inheritance: The core of mlky is the inheritance structure that enables configuration sections to inherit from others. This empowers users to craft intricate configuration setups, overriding keys, subkeys, and updating values as needed.

  • Forgiving or Restrictive: mlky imposes minimal requirements right out of the box. With the custom-built Null class, mlky avoids raising exceptions when pieces of the configuration are absent. This allows developers to focus on developing their code and less on developing their configuration structures. However, mlky also provides the tools for developers to restrict exactly what configurations consist of. The flexibility of your configuration is for you to define!

  • Customizable Restriction: While flexibility is paramount, mlky uniquely provides developers the ability to enforce restrictions on a per-key basis. Error-checking, type-checking, type-coercion, and custom parse functions are supported, enabling fine-grained control over configuration options.

  • TRL Scalability: mlky is designed to assist projects scaling the Technology Readiness Levels (TRL). At low-TRLs, mlky offers its maximum flexibility by providing minimal setup, simple syntax, and forgiving fault tolerance. Once time for a project to mature, mlky assists achieving higher TRLs by providing the framework to set rigid configuration requirements, template generation, and custom error checking.

Usage

To get started with mlky, import the Config object and pass it either a yaml file, yaml string, or a dict:

>>> from mlky import Config
# Empty initially
>>> Config
D{}
# Now initialized
>>> Config({'A': {'a': 1, 'b': 2}, 'B': {'a': 0, 'c': 3}, 'C': ['d', 'e']})
D{'A': D{'a': V=1, 'b': V=2}, 'B': D{'a': V=0, 'c': V=3}, 'C': L[V='d', V='e']}

The object uses tags to represent what each part is:

  • D{...} for dict objects
  • L[...] for list objects
  • V=... for variable objects

These can be accessed by either dot and dict notation:

>>> Config.A
D{'a': V=1, 'b': V=2}
>>> Config['B']
D{'a': V=0, 'c': V=3}
>>> Config.A.a
1
>>> Config['B']['a']
0
>>> Config['A'].b
2
>>> Config.B['c']
3

The Config object is also a singleton, though copies can be created to create local versions:

def set_param(key, value, copy=False):
    if copy:
        config = Config.deepCopy()
    else:
        config = Config()

    config[key] = value

def get_param(key, copy=False):
    if copy:
        config = Config.deepCopy()
    else:
        config = Config()
    return config[key]

>>> set_param('persist', True) # Global
>>> get_param('persist') # Global
True
>>> set_param('local', True, copy=True)
>>> get_param('local')
Null
>>> get_param('persist', copy=True) # Copies global instance
True

Because it is a singleton, you can also use Config directly instead of a variable as well as use the object across the Python instance:

# Script 1
from mlky import Config

Config(a=1, b=2) # initialize somewhere
# Script 2
from mlky import Config

assert Config.a == 1
assert Config.b == 2

Ideally you would want to initialize the Config object at the beginning and then leverage the global instance:

from mlky import Config

def process(item):
  if Config.param:
    ...

def main():
  for item in Config.process:
    process(item)

if __name__ == '__main__':
  Config('/some/config.yaml')
  main()

Please see the docs for more information.

Contributing

We welcome contributions from the community. If you'd like to contribute to mlky, please follow these steps:

  1. Fork the repository and clone it locally.
  2. Create a new branch for your feature or bug fix.
  3. Make your changes and ensure tests pass.
  4. Commit your changes and push them to your fork.
  5. Open a pull request with a detailed description of your changes.

License

mlky is distributed under the Apache v2.0 License. Feel free to use, modify, and distribute it according to the terms of the license.


Explore the power of flexible and robust configuration with mlky, the configuration package built by data scientists, for data scientists. Whether you're working on a small project or a complex system, mlky adapts to your needs and helps you streamline your configuration process.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlky-4.1.2.tar.gz (37.8 kB view details)

Uploaded Source

Built Distribution

mlky-4.1.2-py3-none-any.whl (43.4 kB view details)

Uploaded Python 3

File details

Details for the file mlky-4.1.2.tar.gz.

File metadata

  • Download URL: mlky-4.1.2.tar.gz
  • Upload date:
  • Size: 37.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for mlky-4.1.2.tar.gz
Algorithm Hash digest
SHA256 3d391ab24c5c5a4f2bf3996b08ac8faf2ae07dcfbb2d24dee36944459b8e9345
MD5 e79845d328a17442502c44ae218cd373
BLAKE2b-256 ad97ec8885554dc39519e4806639814acf9ac1b88fe1d1c291f25e1ccf28c20c

See more details on using hashes here.

File details

Details for the file mlky-4.1.2-py3-none-any.whl.

File metadata

  • Download URL: mlky-4.1.2-py3-none-any.whl
  • Upload date:
  • Size: 43.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for mlky-4.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a17e7092550e20ada17c3c08e929f9ce720744db91bebea88a2c2432d2ff5491
MD5 8184f2d6d17ec97d18932893a9a97ba3
BLAKE2b-256 4c5ef1e9a3d7b1f9491e1e2b428af3ddeb9fc310c280fc45dd1f27731e1f353b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page