Skip to main content

Multimodal Large Language Models

Project description


MLLM

Multimodal Large Language Models
Explore the docs »

View Demo · Report Bug · Request Feature


Installation

pip install mllm

Usage

Create an MLLM router with a list of preferred models

import os
from mllm import Router

os.environ["OPENAI_API_KEY"] = "..."
os.environ["ANTHROPIC_API_KEY"] = "..."
os.environ["GEMINI_API_KEY"] = "..."

router = Router(
    preference=["gpt-4-turbo", "anthropic/claude-3-opus-20240229", "gemini/gemini-pro-vision"]
)

Create a new role based chat thread

from mllm import RoleThread

thread = RoleThread(owner_id="dolores@agentsea.ai")
thread.post(role="user", msg="Describe the image", images=["data:image/jpeg;base64,..."])

Chat with the MLLM, store the prompt data in the namespace foo

response = router.chat(thread, namespace="foo")
thread.add_msg(response.msg)

Ask for a structured response

from pydantic import BaseModel

class Animal(BaseModel):
    species: str
    color: str

thread.post(
    role="user",
    msg=f"What animal is in this image? Please output as schema {Animal.model_json_schema()}"
    images=["data:image/jpeg;base64,..."]
)

response = router.chat(thread, namespace="animal", expect=Animal)
animal_parsed = response.parsed

assert type(animal_parsed) == Animal

Find a saved thread or a prompt

RoleThread.find(id="123")
Prompt.find(id="456)

To store a raw openai prompt

from mllm import Prompt, RoleThread

thread = RoleThread()

msg = {
    "role": "user",
    "content": [
        {
            "type": "text",
            "text": "Whats in this image?",
        },
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,..."},
        }
    ]
}
role_message = RoleMessage.from_openai(msg)
thread.add_msg(role_message)

response = call_openai(thread.to_openai())
response_msg = RoleMessage.from_openai(response["choices"][0]["message"])

saved_prompt = Prompt(thread, response_msg, namespace="foo")

Backends

Thread and prompt storage can be backed by:

  • Sqlite
  • Postgresql

Sqlite will be used by default. To use postgres simply configure the env vars:

DB_TYPE=postgres
DB_NAME=mllm
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mllm-0.1.12.tar.gz (8.8 kB view details)

Uploaded Source

Built Distribution

mllm-0.1.12-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file mllm-0.1.12.tar.gz.

File metadata

  • Download URL: mllm-0.1.12.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.12.tar.gz
Algorithm Hash digest
SHA256 ea6e73bd64822964ecca4322e9a442a6b05619a92a08777b0e5b04f6829ca4eb
MD5 31cd1fa8620dd5f5b0813d126dac9e02
BLAKE2b-256 17fe080d942e3ffcb231c30e2cf1c5d010f4224675ddc259a3b46a909f7beedd

See more details on using hashes here.

File details

Details for the file mllm-0.1.12-py3-none-any.whl.

File metadata

  • Download URL: mllm-0.1.12-py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.12-py3-none-any.whl
Algorithm Hash digest
SHA256 a80dd90103fea7dfcf5226291f09c5e282032d99516358cbd10ae8a6cf887bfe
MD5 ce43dffe4657e1ff8ca131a038ae15da
BLAKE2b-256 225e0a187587c531fbcf4b32dff6e485133fbc160370a8792267ca2e218977d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page