Skip to main content

Multimodal Large Language Models

Project description

MLLM

MultiModal Large Language Models

Installation

pip install mllm

Usage

Create an MLLM router from the API keys found in the current system env vars

import os
from mllm import MLLMRouter

os.environ["OPENAI_API_KEY"] = "..."
os.environ["ANTHROPIC_API_KEY"] = "..."
os.environ["GEMINI_API_KEY"] = "..."

router = MLLMRouter.from_env()

Create a new role based chat thread

from mllm import RoleThread

thread = RoleThread()
thread.post(role="user", msg="How are you?", images=["data:image/jpeg;base64,..."])

Chat with the MLLM, store the prompt data in the namespace foo

response = router.chat(thread, namespace="foo")
thread.add_msg(response.msg)

Ask for a structured response

from pydantic import BaseModel

class Foo(BaseModel):
    bar: str
    baz: int

thread.post(
    role="user",
    msg=f"What are bar and baz in this image? Please output as schema {Foo.model_json_schema()}"
    images=["data:image/jpeg;base64,..."]
)

response = router.chat(thread, namespace="foo", response_schema=Foo)
foo_parsed = response.parsed

assert type(foo_parsed) == Foo

Find a saved thread or a prompt

RoleThread.find(id="123")
Prompt.find(id="456)

Just store prompts

from mllm import Prompt, RoleThread

thread = RoleThread()

msg = {
    "role": "user",
    "content": [
        {
            "type": "text",
            "text": "Whats in this image?",
        },
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,..."},
        }
    ]
}
role_message = RoleMessage.from_openai(msg)
thread.add_msg(role_message)

response = call_openai(thread.to_openai())
response_msg = RoleMessage.from_openai(response["choices"][0]["message"])

saved_prompt = Prompt(thread, response_msg, namespace="foo")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mllm-0.1.2.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

mllm-0.1.2-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file mllm-0.1.2.tar.gz.

File metadata

  • Download URL: mllm-0.1.2.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.2.tar.gz
Algorithm Hash digest
SHA256 1eff2eb1c0088822c11a03ffb5c775e65f53fcc8cc9f22c304ea8a2fe3be1502
MD5 5d168ca301eef65b0d2c6278fdca1829
BLAKE2b-256 ee5ba897c6e659428ac124909bcf5cc9d8c4d43e7be6aa648d9ec55248d3b615

See more details on using hashes here.

File details

Details for the file mllm-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: mllm-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 9.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8f3307ee7a93105239716a03bbd8eab7a242f6d408c3209a875e6503c40c19d8
MD5 0ef7da734bffe379a477b8ef11bcabfb
BLAKE2b-256 1dbd371778a7a776b69ffb1b102f1a528887f11c3d5b47ac1add49aa29b34a34

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page