Skip to main content

Multimodal Large Language Models

Project description

MLLM

MultiModal Large Language Models

Installation

pip install mllm

Usage

Create an MLLM router with a list of preferred models

import os
from mllm import MLLMRouter

os.environ["OPENAI_API_KEY"] = "..."
os.environ["ANTHROPIC_API_KEY"] = "..."
os.environ["GEMINI_API_KEY"] = "..."

router = MLLMRouter(
    preference=["gpt-4-turbo", "anthropic/claude-3-opus-20240229", "gemini/gemini-pro-vision"]
)

Create a new role based chat thread

from mllm import RoleThread

thread = RoleThread(owner_id="dolores@agentsea.ai")
thread.post(role="user", msg="Describe the image", images=["data:image/jpeg;base64,..."])

Chat with the MLLM, store the prompt data in the namespace foo

response = router.chat(thread, namespace="foo")
thread.add_msg(response.msg)

Ask for a structured response

from pydantic import BaseModel

class Animal(BaseModel):
    species: str
    color: str

thread.post(
    role="user",
    msg=f"What animal is in this image? Please output as schema {Animal.model_json_schema()}"
    images=["data:image/jpeg;base64,..."]
)

response = router.chat(thread, namespace="animal", expect=Animal)
animal_parsed = response.parsed

assert type(animal_parsed) == Animal

Find a saved thread or a prompt

RoleThread.find(id="123")
Prompt.find(id="456)

To store a raw openai prompt

from mllm import Prompt, RoleThread

thread = RoleThread()

msg = {
    "role": "user",
    "content": [
        {
            "type": "text",
            "text": "Whats in this image?",
        },
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,..."},
        }
    ]
}
role_message = RoleMessage.from_openai(msg)
thread.add_msg(role_message)

response = call_openai(thread.to_openai())
response_msg = RoleMessage.from_openai(response["choices"][0]["message"])

saved_prompt = Prompt(thread, response_msg, namespace="foo")

Backends

Thread and prompt storage can be backed by:

  • Sqlite
  • Postgresql

Sqlite will be used by default. To use postgres simply configure the env vars:

DB_TYPE=postgres
DB_NAME=mllm
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mllm-0.1.3.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

mllm-0.1.3-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file mllm-0.1.3.tar.gz.

File metadata

  • Download URL: mllm-0.1.3.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.3.tar.gz
Algorithm Hash digest
SHA256 e6d7d30a8cb51b8791d84c8855cb4e2cb59ac2672188568c5ec96795f7bcf904
MD5 ce79864844406ba9a0c5aa80e9b39bac
BLAKE2b-256 25ba08879c6ffd4b0b0840ee92be08723fd2c132c1d87b938b029f71009f54c8

See more details on using hashes here.

File details

Details for the file mllm-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: mllm-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 9.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c79385cf966d7acb0abfc66ed9914f1231090767555e3491fb404163237b9d3d
MD5 dbd42547551c3c24348caf2327212a37
BLAKE2b-256 48289b193c0b834ffe7a23aa0265247a0e328afcaa3bbf062deba76606d8325c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page