Skip to main content

Multimodal Large Language Models

Project description


MLLM

Multimodal Large Language Models
Explore the docs »

View Demo · Report Bug · Request Feature


Installation

pip install mllm

Extra dependencies

Some features might require extra dependencies.

For example, for the Gemini models, you can install the extra dependencies like this:

pip install mllm[gemini]

Usage

Create an MLLM router with a list of preferred models

import os
from mllm import Router

os.environ["OPENAI_API_KEY"] = "..."
os.environ["ANTHROPIC_API_KEY"] = "..."
os.environ["GEMINI_API_KEY"] = "..."

router = Router(
    preference=["gpt-4-turbo", "anthropic/claude-3-opus-20240229", "gemini/gemini-1.5-pro-latest"]
)

Create a new role based chat thread

from mllm import RoleThread

thread = RoleThread(owner_id="dolores@agentsea.ai")
thread.post(role="user", msg="Describe the image", images=["data:image/jpeg;base64,..."])

Chat with the MLLM, store the prompt data in the namespace foo

response = router.chat(thread, namespace="foo")
thread.add_msg(response.msg)

Ask for a structured response

from pydantic import BaseModel

class Animal(BaseModel):
    species: str
    color: str

thread.post(
    role="user",
    msg=f"What animal is in this image? Please output as schema {Animal.model_json_schema()}"
    images=["data:image/jpeg;base64,..."]
)

response = router.chat(thread, namespace="animal", expect=Animal)
animal_parsed = response.parsed

assert type(animal_parsed) == Animal

Find a saved thread or a prompt

RoleThread.find(id="123")
Prompt.find(id="456)

To store a raw openai prompt

from mllm import Prompt, RoleThread

thread = RoleThread()

msg = {
    "role": "user",
    "content": [
        {
            "type": "text",
            "text": "Whats in this image?",
        },
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,..."},
        }
    ]
}
role_message = RoleMessage.from_openai(msg)
thread.add_msg(role_message)

response = call_openai(thread.to_openai())
response_msg = RoleMessage.from_openai(response["choices"][0]["message"])

saved_prompt = Prompt(thread, response_msg, namespace="foo")

Add images of any variety to the thread. We support base64, filepath, PIL, and URL

from PIL import Image

img1 = Image.open("img1.png")

thread.post(
  role="user",
  msg="Whats this image?",
  images=["data:image/jpeg;base64,...", "./img1.png", img1, "https://shorturl.at/rVyAS"]
)

Integrations

MLLM is integrated with:

  • Taskara A task management library for AI agents
  • Skillpacks A library to fine tune AI agents on tasks.
  • Surfkit A platform for AI agents
  • Threadmem A thread management library for AI agents

Community

Come join us on Discord.

Backends

Thread and prompt storage can be backed by:

  • Sqlite
  • Postgresql

Sqlite will be used by default. To use postgres simply configure the env vars:

DB_TYPE=postgres
DB_NAME=mllm
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123

Thread image storage by default will utilize the db, to configure bucket storage using GCS:

  • Create a bucket with fine grained permissions
  • Create a GCP service account JSON with permissions to write to the bucket
export THREAD_STORAGE_SA_JSON='{
  "type": "service_account",
  ...
}'
export THREAD_STORAGE_BUCKET=my-bucket

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mllm-0.1.38.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

mllm-0.1.38-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file mllm-0.1.38.tar.gz.

File metadata

  • Download URL: mllm-0.1.38.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/23.4.0

File hashes

Hashes for mllm-0.1.38.tar.gz
Algorithm Hash digest
SHA256 ea4b1341ea7cfa409549c00a70edaa2379969318d1ee66890594332193feee90
MD5 d19dd4541d55177186b822a8b2434af7
BLAKE2b-256 a599b6d49263363ae56b610b57de1e54a9e0f5030832d9f791aa61407bff3f93

See more details on using hashes here.

File details

Details for the file mllm-0.1.38-py3-none-any.whl.

File metadata

  • Download URL: mllm-0.1.38-py3-none-any.whl
  • Upload date:
  • Size: 11.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.4 Darwin/23.4.0

File hashes

Hashes for mllm-0.1.38-py3-none-any.whl
Algorithm Hash digest
SHA256 d051c974d5763a543fb986ba2483e394e26cad9498291702e71804a7d8301f3f
MD5 eddb117418c5952c9f6e78389fcb0c6c
BLAKE2b-256 c9c4e3d6cf6cbb340be9c01ce2c2dbb8b5eb7a659f79f63202c2e22a39d998d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page