Skip to main content

Multimodal Large Language Models

Project description

MLLM

MultiModal Large Language Models

Installation

pip install mllm

Usage

Create an MLLM router with a list of preferred models

import os
from mllm import Router

os.environ["OPENAI_API_KEY"] = "..."
os.environ["ANTHROPIC_API_KEY"] = "..."
os.environ["GEMINI_API_KEY"] = "..."

router = Router(
    preference=["gpt-4-turbo", "anthropic/claude-3-opus-20240229", "gemini/gemini-pro-vision"]
)

Create a new role based chat thread

from mllm import RoleThread

thread = RoleThread(owner_id="dolores@agentsea.ai")
thread.post(role="user", msg="Describe the image", images=["data:image/jpeg;base64,..."])

Chat with the MLLM, store the prompt data in the namespace foo

response = router.chat(thread, namespace="foo")
thread.add_msg(response.msg)

Ask for a structured response

from pydantic import BaseModel

class Animal(BaseModel):
    species: str
    color: str

thread.post(
    role="user",
    msg=f"What animal is in this image? Please output as schema {Animal.model_json_schema()}"
    images=["data:image/jpeg;base64,..."]
)

response = router.chat(thread, namespace="animal", expect=Animal)
animal_parsed = response.parsed

assert type(animal_parsed) == Animal

Find a saved thread or a prompt

RoleThread.find(id="123")
Prompt.find(id="456)

To store a raw openai prompt

from mllm import Prompt, RoleThread

thread = RoleThread()

msg = {
    "role": "user",
    "content": [
        {
            "type": "text",
            "text": "Whats in this image?",
        },
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,..."},
        }
    ]
}
role_message = RoleMessage.from_openai(msg)
thread.add_msg(role_message)

response = call_openai(thread.to_openai())
response_msg = RoleMessage.from_openai(response["choices"][0]["message"])

saved_prompt = Prompt(thread, response_msg, namespace="foo")

Backends

Thread and prompt storage can be backed by:

  • Sqlite
  • Postgresql

Sqlite will be used by default. To use postgres simply configure the env vars:

DB_TYPE=postgres
DB_NAME=mllm
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mllm-0.1.4.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

mllm-0.1.4-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file mllm-0.1.4.tar.gz.

File metadata

  • Download URL: mllm-0.1.4.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.4.tar.gz
Algorithm Hash digest
SHA256 de4c95418eadb37ee6338cb47cdd2031a031344af8dc6039ee8d854810a1baf3
MD5 e64aef88cde9fd389c9b9677aab39eee
BLAKE2b-256 62ee8e7164847077e2963d88e7c3266b7159cb562e215d3c31f666edf0a309de

See more details on using hashes here.

File details

Details for the file mllm-0.1.4-py3-none-any.whl.

File metadata

  • Download URL: mllm-0.1.4-py3-none-any.whl
  • Upload date:
  • Size: 9.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 3b473a82dcc54dc8bae68883ca57381f7c27b1aad68a380da3bde544918a9cc3
MD5 b3b85e6d52d0a9487343cc11b0de028c
BLAKE2b-256 8445cf66bace25b119b909cd73541362d0b97a2db316deacafa73b0f521d921c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page