Skip to main content

Multimodal Large Language Models

Project description

MLLM

MultiModal Large Language Models

Installation

pip install mllm

Usage

Create an MLLM router with a list of preferred models

import os
from mllm import Router

os.environ["OPENAI_API_KEY"] = "..."
os.environ["ANTHROPIC_API_KEY"] = "..."
os.environ["GEMINI_API_KEY"] = "..."

router = Router(
    preference=["gpt-4-turbo", "anthropic/claude-3-opus-20240229", "gemini/gemini-pro-vision"]
)

Create a new role based chat thread

from mllm import RoleThread

thread = RoleThread(owner_id="dolores@agentsea.ai")
thread.post(role="user", msg="Describe the image", images=["data:image/jpeg;base64,..."])

Chat with the MLLM, store the prompt data in the namespace foo

response = router.chat(thread, namespace="foo")
thread.add_msg(response.msg)

Ask for a structured response

from pydantic import BaseModel

class Animal(BaseModel):
    species: str
    color: str

thread.post(
    role="user",
    msg=f"What animal is in this image? Please output as schema {Animal.model_json_schema()}"
    images=["data:image/jpeg;base64,..."]
)

response = router.chat(thread, namespace="animal", expect=Animal)
animal_parsed = response.parsed

assert type(animal_parsed) == Animal

Find a saved thread or a prompt

RoleThread.find(id="123")
Prompt.find(id="456)

To store a raw openai prompt

from mllm import Prompt, RoleThread

thread = RoleThread()

msg = {
    "role": "user",
    "content": [
        {
            "type": "text",
            "text": "Whats in this image?",
        },
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,..."},
        }
    ]
}
role_message = RoleMessage.from_openai(msg)
thread.add_msg(role_message)

response = call_openai(thread.to_openai())
response_msg = RoleMessage.from_openai(response["choices"][0]["message"])

saved_prompt = Prompt(thread, response_msg, namespace="foo")

Backends

Thread and prompt storage can be backed by:

  • Sqlite
  • Postgresql

Sqlite will be used by default. To use postgres simply configure the env vars:

DB_TYPE=postgres
DB_NAME=mllm
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mllm-0.1.5.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

mllm-0.1.5-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file mllm-0.1.5.tar.gz.

File metadata

  • Download URL: mllm-0.1.5.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.5.tar.gz
Algorithm Hash digest
SHA256 d207e62842b7c5dd457d0586400f1c1ac79e4ba1e9187c3c0a2501e447c05b08
MD5 c2597935201596922b8c62192cbcf3ca
BLAKE2b-256 f1679e9cfd08fccde8ee31a5656f238e207cd802ff193224c111ebc53bf61a20

See more details on using hashes here.

File details

Details for the file mllm-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: mllm-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 9.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 a73bee84f20ac97fcd3117b790ac647f9e48d5d5356309602582550c7d6c8a7a
MD5 09e53bba263fb6df21390e324263776e
BLAKE2b-256 977fdf873d198a4d5eda46a891a7f67a0be143f1acbcbd887944a9e5f909a940

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page