Skip to main content

Multimodal Large Language Models

Project description

MLLM

MultiModal Large Language Models

Installation

pip install mllm

Usage

Create an MLLM router with a list of preferred models

import os
from mllm import Router

os.environ["OPENAI_API_KEY"] = "..."
os.environ["ANTHROPIC_API_KEY"] = "..."
os.environ["GEMINI_API_KEY"] = "..."

router = Router(
    preference=["gpt-4-turbo", "anthropic/claude-3-opus-20240229", "gemini/gemini-pro-vision"]
)

Create a new role based chat thread

from mllm import RoleThread

thread = RoleThread(owner_id="dolores@agentsea.ai")
thread.post(role="user", msg="Describe the image", images=["data:image/jpeg;base64,..."])

Chat with the MLLM, store the prompt data in the namespace foo

response = router.chat(thread, namespace="foo")
thread.add_msg(response.msg)

Ask for a structured response

from pydantic import BaseModel

class Animal(BaseModel):
    species: str
    color: str

thread.post(
    role="user",
    msg=f"What animal is in this image? Please output as schema {Animal.model_json_schema()}"
    images=["data:image/jpeg;base64,..."]
)

response = router.chat(thread, namespace="animal", expect=Animal)
animal_parsed = response.parsed

assert type(animal_parsed) == Animal

Find a saved thread or a prompt

RoleThread.find(id="123")
Prompt.find(id="456)

To store a raw openai prompt

from mllm import Prompt, RoleThread

thread = RoleThread()

msg = {
    "role": "user",
    "content": [
        {
            "type": "text",
            "text": "Whats in this image?",
        },
        {
            "type": "image_url",
            "image_url": {"url": f"data:image/jpeg;base64,..."},
        }
    ]
}
role_message = RoleMessage.from_openai(msg)
thread.add_msg(role_message)

response = call_openai(thread.to_openai())
response_msg = RoleMessage.from_openai(response["choices"][0]["message"])

saved_prompt = Prompt(thread, response_msg, namespace="foo")

Backends

Thread and prompt storage can be backed by:

  • Sqlite
  • Postgresql

Sqlite will be used by default. To use postgres simply configure the env vars:

DB_TYPE=postgres
DB_NAME=mllm
DB_HOST=localhost
DB_USER=postgres
DB_PASS=abc123

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mllm-0.1.6.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

mllm-0.1.6-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file mllm-0.1.6.tar.gz.

File metadata

  • Download URL: mllm-0.1.6.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.6.tar.gz
Algorithm Hash digest
SHA256 4958f4291641e27cdf75487712fa6a4bdc8e1199250425d032239768620af82b
MD5 759f1619de8c4309f9e6d1fb16a28ed1
BLAKE2b-256 1dd8f9e9dd07cdf4b4b1614ee762a97992cd946fd83363171f8c0bf16c3c82a2

See more details on using hashes here.

File details

Details for the file mllm-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: mllm-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.1 Darwin/22.6.0

File hashes

Hashes for mllm-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 c53de764312a33d27f58976aa361474fc80e7dae4bda5a07170ca669b1e17a6e
MD5 29aa5d1984ac7aa89b408c077127a924
BLAKE2b-256 085f69ad9dfc617055acb12a5516d7d7dd2cd4f5b305d0ac5a0ac48a826f2e9d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page