utils & misc 4 mlm8s
Project description
mlm8s
miscellaneous for machine-learning in TensorFlow
pip install keras_tuner
pip install mlm8s
Imports:
from mlm8s import ListedPaths, paths2labels, strings2onehot, paths2label_dicts, map_via_dict
from mlm8s import GeneratorDataset, HyperModel, connect
from mlm8s import standardize, normalize, stretch, rotate_deg, flatten, correlate
from mlm8s import create_meshgrid, span_polar_basis
from mlm8s import group_unique
from mlm8s import print_plot_play
from mlm8s import get_sampling_matrix, soft_threshold, deadzone_l1_loss, lasso_l1, norm_l0, huber_loss
from mlm8s import lipschitz_grad_lasso, nesterov_momentum, ista_prox_lasso, fista
Labels from Paths:
from mlm8s import ListedPaths, paths2label_dicts, map_via_dict
### read PATH2DATA and (onehot-)encode by file-containing folder:
paths = ListedPaths(PATH2DATA)*'ogg'
label_dict = paths2label_dicts(paths(), seperators=['/', '.'], indices=[-2, 0])
labels = map_via_dict(paths2labels(paths()), label_dict)
Class - GeneratorDataset:
Enables alternating results of tf.random* -calls, from within the generator of tf.data.Dataset.from_generator*.
kwargs = dict()
kwargs['paths'] = paths
kwargs['seperators'] = ['/', '.']
kwargs['indices'] = [-2, 0]
### Feature-Engineering with generator, that can use random variables!!
def engineer_features(paths):
# use data in path to engineer features
features = tf.random.uniform(shape=[32, 256, 256, 4])
return features
kwargs['engineer_features'] = engineer_features
### Creating Features & Labels:
def generate_from_paths(batch_size=1024, **kwargs):
paths = kwargs['paths']
seperators = kwargs['seperators']
indices = kwargs['indices']
engineer_features = kwargs['engineer_features']
rdm_paths = paths.get_rdm(batch_size)
features = engineer_features(rdm_paths)
labels = paths2labels(rdm_paths, seperators, indices)
labels = map_via_dict(labels, label_dict)
return features, labels
### Creating tf.data.Dataset, that can generate an infinite number of random batches
### from 'generate_from_paths'.
ds = GeneratorDataset(generate_from_paths, batch_size=128, epochs=16, **kwargs)()
for batch in ds.take(1):
x, y = batch
print(x.shape, y.shape)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mlm8s-1.0.1.tar.gz
(29.4 kB
view details)
Built Distribution
mlm8s-1.0.1-py3-none-any.whl
(33.3 kB
view details)
File details
Details for the file mlm8s-1.0.1.tar.gz
.
File metadata
- Download URL: mlm8s-1.0.1.tar.gz
- Upload date:
- Size: 29.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.11.0 Linux/5.15.0-1036-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | def109e325be99d48179f13c73503b5fa758347ec1e842779cd049e0f5ebfef1 |
|
MD5 | 4125783f4d2e33dd307ece28f1adf2a8 |
|
BLAKE2b-256 | b311ea76cadf04339572e7e700178961609f12b97d08947092a42f7611e54584 |
File details
Details for the file mlm8s-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: mlm8s-1.0.1-py3-none-any.whl
- Upload date:
- Size: 33.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.11.0 Linux/5.15.0-1036-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 123d57989368a78db33a41be56f753a946fb4f401c58ed1e58043d39ac8fd7f3 |
|
MD5 | 5207e2774c6a806f0ef7f09fb00b8019 |
|
BLAKE2b-256 | f8546cfdf6a8e724fafda4b546276d643663badb590f204863f2cf9ccd2999a7 |