utils & misc 4 mlm8s
Project description
mlm8s
miscellaneous for machine-learning in TensorFlow
pip install keras_tuner
pip install mlm8s
Imports:
from mlm8s import ListedPaths, paths2labels, strings2onehot, paths2label_dicts, map_via_dict
from mlm8s import GeneratorDataset, HyperModel, connect
from mlm8s import standardize, normalize, stretch, rotate_deg, flatten, correlate
from mlm8s import create_meshgrid, span_polar_basis
from mlm8s import group_unique
from mlm8s import print_plot_play
from mlm8s import get_sampling_matrix, soft_threshold, deadzone_l1_loss, lasso_l1, norm_l0, huber_loss
from mlm8s import lipschitz_grad_lasso, nesterov_momentum, ista_prox_lasso, fista
Labels from Paths:
from mlm8s import ListedPaths, paths2label_dicts, map_via_dict
### read PATH2DATA and (onehot-)encode by file-containing folder:
paths = ListedPaths(PATH2DATA)*'ogg'
label_dict = paths2label_dicts(paths(), seperators=['/', '.'], indices=[-2, 0])
labels = map_via_dict(paths2labels(paths()), label_dict)
Class - GeneratorDataset:
Enables alternating results of tf.random* -calls, from within the generator of tf.data.Dataset.from_generator*.
kwargs = dict()
kwargs['paths'] = paths
kwargs['label_dict'] = label_dict
kwargs['seperators'] = ['/', '.']
kwargs['indices'] = [-2, 0]
### Feature-Engineering with generator, that can use random variables!!
def engineer_features(paths):
# use data in path to engineer features
features = tf.random.uniform(shape=[32, 256, 256, 4])
return features
kwargs['engineer_features'] = engineer_features
### Creating Features & Labels:
def generate_from_paths(batch_size=1024, **kwargs):
paths = kwargs['paths']
seperators = kwargs['seperators']
indices = kwargs['indices']
engineer_features = kwargs['engineer_features']
label_dict = kwargs['label_dict']
rdm_paths = paths.get_rdm(batch_size)
features = engineer_features(rdm_paths)
labels = paths2labels(rdm_paths, seperators, indices)
labels = map_via_dict(labels, label_dict)
return features, labels
### Creating tf.data.Dataset, that can generate an infinite number of random batches
### from 'generate_from_paths'.
ds = GeneratorDataset(generate_from_paths, batch_size=128, epochs=16, **kwargs)()
for batch in ds.take(1):
x, y = batch
print(x.shape, y.shape)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mlm8s-1.0.3.2.tar.gz
(101.8 kB
view details)
Built Distribution
mlm8s-1.0.3.2-py3-none-any.whl
(107.3 kB
view details)
File details
Details for the file mlm8s-1.0.3.2.tar.gz
.
File metadata
- Download URL: mlm8s-1.0.3.2.tar.gz
- Upload date:
- Size: 101.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.11.0 Linux/6.2.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | db31621c191005f1ea68cd582af5a692338c85c2dbbafd229f4b2701319dea7c |
|
MD5 | f344f83454f4719f199a74c61a0a24d5 |
|
BLAKE2b-256 | b997633ad35d518f82b70e64cd0ff1e898221e419ee20866e5d1bf75dd320338 |
File details
Details for the file mlm8s-1.0.3.2-py3-none-any.whl
.
File metadata
- Download URL: mlm8s-1.0.3.2-py3-none-any.whl
- Upload date:
- Size: 107.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.11.0 Linux/6.2.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd20567559684f5be234baa228f4105a1c4071e33ee3c50c3bcdd128449f676e |
|
MD5 | f27bbb7eb3d9d176f826bf572f3e7810 |
|
BLAKE2b-256 | fa7eeb695aad15035f2b07cc1941da79f885dbd2201c9e01798940020b5a63eb |