Skip to main content

utils & misc 4 mlm8s

Project description

mlm8s

miscellaneous for machine-learning in TensorFlow
pip install keras_tuner
pip install mlm8s

Imports:

from mlm8s import ListedPaths, paths2labels, strings2onehot, paths2label_dicts, map_via_dict
from mlm8s import GeneratorDataset, HyperModel, connect
from mlm8s import standardize, normalize, stretch, rotate_deg, flatten, correlate
from mlm8s import create_meshgrid, span_polar_basis
from mlm8s import group_unique
from mlm8s import print_plot_play
from mlm8s import get_sampling_matrix, soft_threshold, deadzone_l1_loss, lasso_l1, norm_l0, huber_loss
from mlm8s import lipschitz_grad_lasso, nesterov_momentum, ista_prox_lasso, fista

Labels from Paths:

from mlm8s import ListedPaths, paths2label_dicts, map_via_dict

### read PATH2DATA and (onehot-)encode by file-containing folder:

paths = ListedPaths(PATH2DATA)*'ogg'
label_dict = paths2label_dicts(paths(), seperators=['/', '.'], indices=[-2, 0])
labels = map_via_dict(paths2labels(paths()), label_dict)

Class - GeneratorDataset:

Enables alternating results of tf.random* -calls, from within the generator of tf.data.Dataset.from_generator*.

kwargs = dict()
kwargs['paths'] = paths
kwargs['label_dict'] = label_dict
kwargs['seperators'] = ['/', '.']
kwargs['indices'] = [-2, 0]

### Feature-Engineering with generator, that can use random variables!!
def engineer_features(paths):
    # use data in path to engineer features
    features = tf.random.uniform(shape=[32, 256, 256, 4])
    return features

kwargs['engineer_features'] = engineer_features

### Creating Features & Labels:
def generate_from_paths(batch_size=1024, **kwargs):
    paths = kwargs['paths']
    seperators = kwargs['seperators']
    indices = kwargs['indices']
    engineer_features = kwargs['engineer_features']
    label_dict = kwargs['label_dict']
    rdm_paths = paths.get_rdm(batch_size)
    features = engineer_features(rdm_paths)
    labels = paths2labels(rdm_paths, seperators, indices)
    labels = map_via_dict(labels, label_dict)
    return features, labels

### Creating tf.data.Dataset, that can generate an infinite number of random batches
###                           from 'generate_from_paths'.
ds = GeneratorDataset(generate_from_paths, batch_size=128, epochs=16, **kwargs)()

for batch in ds.take(1):
    x, y = batch
    print(x.shape, y.shape)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlm8s-1.0.3.2.tar.gz (101.8 kB view details)

Uploaded Source

Built Distribution

mlm8s-1.0.3.2-py3-none-any.whl (107.3 kB view details)

Uploaded Python 3

File details

Details for the file mlm8s-1.0.3.2.tar.gz.

File metadata

  • Download URL: mlm8s-1.0.3.2.tar.gz
  • Upload date:
  • Size: 101.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.0 Linux/6.2.0-1018-azure

File hashes

Hashes for mlm8s-1.0.3.2.tar.gz
Algorithm Hash digest
SHA256 db31621c191005f1ea68cd582af5a692338c85c2dbbafd229f4b2701319dea7c
MD5 f344f83454f4719f199a74c61a0a24d5
BLAKE2b-256 b997633ad35d518f82b70e64cd0ff1e898221e419ee20866e5d1bf75dd320338

See more details on using hashes here.

File details

Details for the file mlm8s-1.0.3.2-py3-none-any.whl.

File metadata

  • Download URL: mlm8s-1.0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 107.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.0 Linux/6.2.0-1018-azure

File hashes

Hashes for mlm8s-1.0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bd20567559684f5be234baa228f4105a1c4071e33ee3c50c3bcdd128449f676e
MD5 f27bbb7eb3d9d176f826bf572f3e7810
BLAKE2b-256 fa7eeb695aad15035f2b07cc1941da79f885dbd2201c9e01798940020b5a63eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page