Skip to main content

#本程序由高端设计编写,需要引用或者有建议请联系邮箱1481407566@qq.com本程序数据源为4000多名健康与患者的混合宏基因组测序结果,样本体内的微生物数量已经换算成相对百分比,总和接近1,使用4种机器学习的分类方法,线性回归,神经网络,SVM,random forest 建立模型,对新样本预测其患病与否

Project description

#本程序由高端设计编写,需要引用或者有建议请联系邮箱1481407566@qq.com #本程序数据源为4000多名健康与患者的混合宏基因组测序结果,样本体内的微生物数量已经换算成相对百分比,总和接近1 #使用4种机器学习的分类方法,线性回归,神经网络,SVM,random forest 建立模型,对新样本预测其患病与否

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

MLmetagenomics-0.0.5.tar.gz (340.2 kB view details)

Uploaded Source

File details

Details for the file MLmetagenomics-0.0.5.tar.gz.

File metadata

  • Download URL: MLmetagenomics-0.0.5.tar.gz
  • Upload date:
  • Size: 340.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.8

File hashes

Hashes for MLmetagenomics-0.0.5.tar.gz
Algorithm Hash digest
SHA256 9e8768b23f447c0ad55fc6a76f350f83a343ac92b94fe26d76c9b5c8aa0d8459
MD5 acab17d8d9b033b3ab42d2132e1b2edc
BLAKE2b-256 cab8508d149b05face0a4dfe39e3b2a76de2bc50feaf468722bb1522e0e525c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page