Skip to main content

No project description provided

Project description

MLOps ODS

This project for ml model with MLOps instruments

the methodology of repo (GitHub flow - one main branch, and developing in other brunches):

  • main branch: 'master'
  • other branches: 'fix-', 'feature-', 'model-', 'experiment-'
poetry build --format=wheel

Docker image (build / run):

docker build . -t mlops_ods_image
docker run -it mlops_ods_image /bin/bash

build for linux:

docker build . -t mlops_ods_image --platform linux/amd64

run with port and volumes if necessary:

docker run -p 8888:8888 -v {path-to-local-folder-(pwd)}:/app/volumes -it mlops_ods_image /bin/bash

documentation of jupyter notebooks with quarto:

quarto render

quarto preview  src/mlops_ods/notebooks/eda.ipynb
quarto render src/mlops_ods/notebooks/eda.ipynb --to html

snakemake command inside docker:

snakemake --cores 10
snakemake --dag | dot -Tsvg > dag.svg

docker ps
docker cp <CONTAINER ID>:/app/dag.svg .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlops_ods-0.1.202406281646.tar.gz (1.5 MB view details)

Uploaded Source

Built Distribution

mlops_ods-0.1.202406281646-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file mlops_ods-0.1.202406281646.tar.gz.

File metadata

  • Download URL: mlops_ods-0.1.202406281646.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for mlops_ods-0.1.202406281646.tar.gz
Algorithm Hash digest
SHA256 f6ade77554359a637ae8ce67fe9f8a9040ac5d100df69de54b71c3e4c21e92b4
MD5 8fcd36fbe24add06c19312df7caa80db
BLAKE2b-256 682a966b3ae78ac43edaac3f34be0477ce6bc6bc1749f24291eee6c18e036d4a

See more details on using hashes here.

File details

Details for the file mlops_ods-0.1.202406281646-py3-none-any.whl.

File metadata

File hashes

Hashes for mlops_ods-0.1.202406281646-py3-none-any.whl
Algorithm Hash digest
SHA256 d7819f8e534ba0190efa6fb7c5cc12684e6cf5bce042bf39759d36d71ac5f240
MD5 7ee46fb2916e3b41d15f5e8fc9ca5042
BLAKE2b-256 50791935afe58cfb595eb438d37f4711110b0d6ccddf658b849162bf8ae7e0e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page