Skip to main content

Machine Learning Operations Toolkit

Project description

GitHub GitHub GitHub

⏳ Tempo: The MLOps Software Development Kit

Vision

Enable data scientists to see a productionised machine learning model within moments, not months. Easy to work with locally and also in kubernetes, whatever your preferred data science tools

Documentation

Highlights

Tempo provides a unified interface to multiple MLOps projects that enable data scientists to deploy and productionise machine learning systems.

  • Package your trained model artifacts to optimized server runtimes (Tensorflow, PyTorch, Sklearn, XGBoost etc)
  • Package custom business logic to production servers.
  • Build an inference pipeline of models and orchestration steps.
  • Include any custom python components as needed. Examples:
    • Outlier detectors with Alibi-Detect.
    • Explainers with Alibi-Explain.
  • Test Locally - Deploy to Production
    • Run with local unit tests.
    • Deploy locally to Docker to test with Docker runtimes.
    • Deploy to production on Kubernetes
    • Extract declarative Kubernetes yaml to follow GitOps workflows.
  • Supporting a wide range of production runtimes
    • Seldon Core open source
    • KFServing open source
    • Seldon Deploy enterprise
  • Create stateful services. Examples:
    • Multi-Armed Bandits.

Workflow

  1. Develop locally.
  2. Test locally on Docker with production artifacts.
  3. Push artifacts to remote bucket store and launch remotely (on Kubernetes).

overview

Motivating Synopsis

Data scientists can easily test their models and orchestrate them with pipelines.

Below we see two Models (sklearn and xgboost) with a function decorated pipeline to call both.

def get_tempo_artifacts(artifacts_folder: str) -> Tuple[Pipeline, Model, Model]:

    sklearn_model = Model(
        name="test-iris-sklearn",
        platform=ModelFramework.SKLearn,
        local_folder=f"{artifacts_folder}/{SKLearnFolder}",
        uri="s3://tempo/basic/sklearn",
    )

    xgboost_model = Model(
        name="test-iris-xgboost",
        platform=ModelFramework.XGBoost,
        local_folder=f"{artifacts_folder}/{XGBoostFolder}",
        uri="s3://tempo/basic/xgboost",
    )

    @pipeline(
        name="classifier",
        uri="s3://tempo/basic/pipeline",
        local_folder=f"{artifacts_folder}/{PipelineFolder}",
        models=PipelineModels(sklearn=sklearn_model, xgboost=xgboost_model),
    )
    def classifier(payload: np.ndarray) -> Tuple[np.ndarray, str]:
        res1 = classifier.models.sklearn(input=payload)

        if res1[0] == 1:
            return res1, SKLearnTag
        else:
            return classifier.models.xgboost(input=payload), XGBoostTag

    return classifier, sklearn_model, xgboost_model

Save the pipeline code.

from tempo.serve.loader import save
save(classifier)

Deploy to docker.

from tempo.seldon.docker import SeldonDockerRuntime
docker_runtime = SeldonDockerRuntime()
docker_runtime.deploy(classifier)
docker_runtime.wait_ready(classifier)

Make predictions on containerized servers that would be used in production.

classifier.remote(payload=np.array([[1, 2, 3, 4]]))

Deploy to Kubernetes for production.

from tempo.serve.metadata import RuntimeOptions, KubernetesOptions
runtime_options = RuntimeOptions(
        k8s_options=KubernetesOptions(
            namespace="production",
            authSecretName="minio-secret"
        )
    )

from tempo.seldon.k8s import SeldonKubernetesRuntime
k8s_runtime = SeldonKubernetesRuntime(runtime_options)
k8s_runtime.deploy(classifier)
k8s_runtime.wait_ready(classifier)

This is an extract from the introduction demo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlops-tempo-0.1.0rc1.tar.gz (33.3 kB view details)

Uploaded Source

Built Distribution

mlops_tempo-0.1.0rc1-py3-none-any.whl (58.6 kB view details)

Uploaded Python 3

File details

Details for the file mlops-tempo-0.1.0rc1.tar.gz.

File metadata

  • Download URL: mlops-tempo-0.1.0rc1.tar.gz
  • Upload date:
  • Size: 33.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for mlops-tempo-0.1.0rc1.tar.gz
Algorithm Hash digest
SHA256 801009a384ad11bfb9edcc4ae9054c1ce39bb9eb16ebc4dbab2dd494d1fd0f93
MD5 dcecac9be3d429c98301904e440cd071
BLAKE2b-256 722371e1069c1ec86479eaaa0ea351c9dd0d7c2a521c86fde419047c06bda0b7

See more details on using hashes here.

File details

Details for the file mlops_tempo-0.1.0rc1-py3-none-any.whl.

File metadata

  • Download URL: mlops_tempo-0.1.0rc1-py3-none-any.whl
  • Upload date:
  • Size: 58.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for mlops_tempo-0.1.0rc1-py3-none-any.whl
Algorithm Hash digest
SHA256 ee7ba8f47fc991dba42cb6b87f418aef8d96ba68a57e358889e827d91598d299
MD5 6507c90ebded45ae068e1a80bb708c0d
BLAKE2b-256 b8d890b6fff3162686718676eea4bd52087d1932f7d960b6c9bdc1acce265c5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page