Skip to main content

Machine Learning Operations Toolkit

Project description

Version Python version License Documentation Status

Tempo: The MLOps Software Development Kit

Documentation

An open source framework to enable data scientists to productionise, test and deploy models with simple workflows that abstract the underlying complexity of scalable MLOps platforms.

Highlights

Tempo provides a unified interface to multiple MLOps projects that enable data scientists to deploy and productionise machine learning systems.

  • Package your trained model artifacts to optimized server runtimes (Tensorflow, PyTorch, Sklearn, XGBoost etc)
  • Package custom business logic to production servers.
  • Build an inference pipeline of models and orchestration steps.
  • Include any custom python components as needed. Examples:
    • Outlier detectors with Alibi-Detect.
    • Explainers with Alibi-Explain.
  • Test Locally - Deploy to Production
    • Run with local unit tests.
    • Deploy locally to Docker to test with Docker runtimes.
    • Deploy to production on Kubernetes
    • Extract declarative Kubernetes yaml to follow GitOps workflows.
  • Supporting a wide range of production runtimes
    • Seldon Core open source
    • KFServing open source
    • Seldon Deploy enterprise
  • Create stateful services. Examples:
    • Multi-Armed Bandits.

Workflow

  1. Develop locally.
  2. Test locally on Docker with production artifacts.
  3. Push artifacts to remote bucket store and launch remotely (on Kubernetes).

overview

Motivating Synopsis

Data scientists can easily test their models and orchestrate them with pipelines.

Below we see two Models (sklearn and xgboost) with a function decorated pipeline to call both.

def get_tempo_artifacts(artifacts_folder: str) -> Tuple[Pipeline, Model, Model]:

    sklearn_model = Model(
        name="test-iris-sklearn",
        platform=ModelFramework.SKLearn,
        local_folder=f"{artifacts_folder}/{SKLearnFolder}",
        uri="s3://tempo/basic/sklearn",
    )

    xgboost_model = Model(
        name="test-iris-xgboost",
        platform=ModelFramework.XGBoost,
        local_folder=f"{artifacts_folder}/{XGBoostFolder}",
        uri="s3://tempo/basic/xgboost",
    )

    @pipeline(
        name="classifier",
        uri="s3://tempo/basic/pipeline",
        local_folder=f"{artifacts_folder}/{PipelineFolder}",
        models=PipelineModels(sklearn=sklearn_model, xgboost=xgboost_model),
    )
    def classifier(payload: np.ndarray) -> Tuple[np.ndarray, str]:
        res1 = classifier.models.sklearn(input=payload)

        if res1[0] == 1:
            return res1, SKLearnTag
        else:
            return classifier.models.xgboost(input=payload), XGBoostTag

    return classifier, sklearn_model, xgboost_model

Save the pipeline code.

from tempo.serve.loader import save
save(classifier)

Deploy locally to docker.

from tempo import deploy_local
remote_model = deploy_local(classifier)

Make predictions on containerized servers that would be used in production.

remote_model.predict(np.array([[1, 2, 3, 4]]))

Deploy to Kubernetes for production.

from tempo.serve.metadata import SeldonCoreOptions
from tempo import deploy_remote

runtime_options = SeldonCoreOptions(**{
    "remote_options": {
        "namespace": "production",
        "authSecretName": "minio-secret"
    }
})	
remote_model = deploy_remote(classifier, options=runtime_options)

This is an extract from the multi-model introduction demo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlops-tempo-0.3.0.tar.gz (43.9 kB view details)

Uploaded Source

Built Distribution

mlops_tempo-0.3.0-py3-none-any.whl (74.2 kB view details)

Uploaded Python 3

File details

Details for the file mlops-tempo-0.3.0.tar.gz.

File metadata

  • Download URL: mlops-tempo-0.3.0.tar.gz
  • Upload date:
  • Size: 43.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for mlops-tempo-0.3.0.tar.gz
Algorithm Hash digest
SHA256 93c327666baac0dbe26056d04d87957af72293647b59a60ed51516c55fa2d2b4
MD5 8e9880d906074b007250b2ef8ca3b56d
BLAKE2b-256 2352a959eba74cf370774e7207cf19853801dd195d375eeff147bbfee23213da

See more details on using hashes here.

File details

Details for the file mlops_tempo-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: mlops_tempo-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 74.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for mlops_tempo-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5ca83e4d526cdffb9af3c352ef9275aa455af569f1e43f8bf54defae2b3b31a2
MD5 2d51171b1a5d139dbcdc4a43ad25ce38
BLAKE2b-256 e2e48c65d2a9573821374d47eb10ffc6fff9dcc63ed13937ba9b1bab638fec76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page