Skip to main content

Machine Learning Operations Toolkit

Project description

Version Python version License Documentation Status

Tempo: The MLOps Software Development Kit

Documentation

An open source framework to enable data scientists to productionise, test and deploy models with simple workflows that abstract the underlying complexity of scalable MLOps platforms.

Highlights

Tempo provides a unified interface to multiple MLOps projects that enable data scientists to deploy and productionise machine learning systems.

  • Package your trained model artifacts to optimized server runtimes (Tensorflow, PyTorch, Sklearn, XGBoost etc)
  • Package custom business logic to production servers.
  • Build an inference pipeline of models and orchestration steps.
  • Include any custom python components as needed. Examples:
    • Outlier detectors with Alibi-Detect.
    • Explainers with Alibi-Explain.
  • Test Locally - Deploy to Production
    • Run with local unit tests.
    • Deploy locally to Docker to test with Docker runtimes.
    • Deploy to production on Kubernetes
    • Extract declarative Kubernetes yaml to follow GitOps workflows.
  • Supporting a wide range of production runtimes
    • Seldon Core open source
    • KFServing open source
    • Seldon Deploy enterprise
  • Create stateful services. Examples:
    • Multi-Armed Bandits.

Workflow

  1. Develop locally.
  2. Test locally on Docker with production artifacts.
  3. Push artifacts to remote bucket store and launch remotely (on Kubernetes).

overview

Motivating Synopsis

Data scientists can easily test their models and orchestrate them with pipelines.

Below we see two Models (sklearn and xgboost) with a function decorated pipeline to call both.

def get_tempo_artifacts(artifacts_folder: str) -> Tuple[Pipeline, Model, Model]:

    sklearn_model = Model(
        name="test-iris-sklearn",
        platform=ModelFramework.SKLearn,
        local_folder=f"{artifacts_folder}/{SKLearnFolder}",
        uri="s3://tempo/basic/sklearn",
    )

    xgboost_model = Model(
        name="test-iris-xgboost",
        platform=ModelFramework.XGBoost,
        local_folder=f"{artifacts_folder}/{XGBoostFolder}",
        uri="s3://tempo/basic/xgboost",
    )

    @pipeline(
        name="classifier",
        uri="s3://tempo/basic/pipeline",
        local_folder=f"{artifacts_folder}/{PipelineFolder}",
        models=PipelineModels(sklearn=sklearn_model, xgboost=xgboost_model),
    )
    def classifier(payload: np.ndarray) -> Tuple[np.ndarray, str]:
        res1 = classifier.models.sklearn(input=payload)

        if res1[0] == 1:
            return res1, SKLearnTag
        else:
            return classifier.models.xgboost(input=payload), XGBoostTag

    return classifier, sklearn_model, xgboost_model

Save the pipeline code.

from tempo.serve.loader import save
save(classifier)

Deploy locally to docker.

from tempo import deploy_local
remote_model = deploy_local(classifier)

Make predictions on containerized servers that would be used in production.

remote_model.predict(np.array([[1, 2, 3, 4]]))

Deploy to Kubernetes for production.

from tempo.serve.metadata import SeldonCoreOptions
from tempo import deploy_remote

runtime_options = SeldonCoreOptions(**{
    "remote_options": {
        "namespace": "production",
        "authSecretName": "minio-secret"
    }
})	
remote_model = deploy_remote(classifier, options=runtime_options)

This is an extract from the multi-model introduction demo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlops-tempo-0.5.1.tar.gz (47.2 kB view details)

Uploaded Source

Built Distribution

mlops_tempo-0.5.1-py3-none-any.whl (78.0 kB view details)

Uploaded Python 3

File details

Details for the file mlops-tempo-0.5.1.tar.gz.

File metadata

  • Download URL: mlops-tempo-0.5.1.tar.gz
  • Upload date:
  • Size: 47.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for mlops-tempo-0.5.1.tar.gz
Algorithm Hash digest
SHA256 9d20c3b1c4e13d83dd434065932e567d6340ce47719a8f74c343a01b18569b94
MD5 b330fda4b2d697e98132bdf72e3cc36f
BLAKE2b-256 887cfb583e4db14cbd5e9fe87ed50f60da66dc39a463522ab9917c348fcca2ec

See more details on using hashes here.

File details

Details for the file mlops_tempo-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: mlops_tempo-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 78.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0.post20210125 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for mlops_tempo-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 79c04a456f8ec1c8482cc1134f48879c2d05e626760d91ffba2282905b3d1e9c
MD5 f8e7873dbcebf7f0386a291865f9f5ec
BLAKE2b-256 242e3aac69d1bc283119fe5a0d98a9b4a120d03504f4f8f7a1d26b7abe36e151

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page