Skip to main content

Machine Learning Operations Toolkit

Project description

Version Python version License Documentation Status

Tempo: The MLOps Software Development Kit

Documentation

An open source framework to enable data scientists to productionise, test and deploy models with simple workflows that abstract the underlying complexity of scalable MLOps platforms.

Highlights

Tempo provides a unified interface to multiple MLOps projects that enable data scientists to deploy and productionise machine learning systems.

  • Package your trained model artifacts to optimized server runtimes (Tensorflow, PyTorch, Sklearn, XGBoost etc)
  • Package custom business logic to production servers.
  • Build an inference pipeline of models and orchestration steps.
  • Include any custom python components as needed. Examples:
    • Outlier detectors with Alibi-Detect.
    • Explainers with Alibi-Explain.
  • Test Locally - Deploy to Production
    • Run with local unit tests.
    • Deploy locally to Docker to test with Docker runtimes.
    • Deploy to production on Kubernetes
    • Extract declarative Kubernetes yaml to follow GitOps workflows.
  • Supporting Seldon production runtimes
    • Seldon Core open source
    • Seldon Deploy enterprise
  • Create stateful services. Examples:
    • Multi-Armed Bandits.

Workflow

  1. Develop locally.
  2. Test locally on Docker with production artifacts.
  3. Push artifacts to remote bucket store and launch remotely (on Kubernetes).

overview

Motivating Synopsis

Data scientists can easily test their models and orchestrate them with pipelines.

Below we see two Models (sklearn and xgboost) with a function decorated pipeline to call both.

def get_tempo_artifacts(artifacts_folder: str) -> Tuple[Pipeline, Model, Model]:

    sklearn_model = Model(
        name="test-iris-sklearn",
        platform=ModelFramework.SKLearn,
        local_folder=f"{artifacts_folder}/{SKLearnFolder}",
        uri="s3://tempo/basic/sklearn",
    )

    xgboost_model = Model(
        name="test-iris-xgboost",
        platform=ModelFramework.XGBoost,
        local_folder=f"{artifacts_folder}/{XGBoostFolder}",
        uri="s3://tempo/basic/xgboost",
    )

    @pipeline(
        name="classifier",
        uri="s3://tempo/basic/pipeline",
        local_folder=f"{artifacts_folder}/{PipelineFolder}",
        models=PipelineModels(sklearn=sklearn_model, xgboost=xgboost_model),
    )
    def classifier(payload: np.ndarray) -> Tuple[np.ndarray, str]:
        res1 = classifier.models.sklearn(input=payload)

        if res1[0] == 1:
            return res1, SKLearnTag
        else:
            return classifier.models.xgboost(input=payload), XGBoostTag

    return classifier, sklearn_model, xgboost_model

Save the pipeline code.

from tempo.serve.loader import save
save(classifier)

Deploy locally to docker.

from tempo import deploy_local
remote_model = deploy_local(classifier)

Make predictions on containerized servers that would be used in production.

remote_model.predict(np.array([[1, 2, 3, 4]]))

Deploy to Kubernetes for production.

from tempo.serve.metadata import SeldonCoreOptions
from tempo import deploy_remote

runtime_options = SeldonCoreOptions(**{
    "remote_options": {
        "namespace": "production",
        "authSecretName": "minio-secret"
    }
})	
remote_model = deploy_remote(classifier, options=runtime_options)

This is an extract from the multi-model introduction demo.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlops-tempo-0.5.2.tar.gz (45.0 kB view details)

Uploaded Source

Built Distribution

mlops_tempo-0.5.2-py3-none-any.whl (75.0 kB view details)

Uploaded Python 3

File details

Details for the file mlops-tempo-0.5.2.tar.gz.

File metadata

  • Download URL: mlops-tempo-0.5.2.tar.gz
  • Upload date:
  • Size: 45.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.7.4

File hashes

Hashes for mlops-tempo-0.5.2.tar.gz
Algorithm Hash digest
SHA256 28744f6c93331d281e22c879390d1147cf7355d4d387e3be4db3395743197134
MD5 457e4978b5426ebf73060958c460bb8d
BLAKE2b-256 fdc2f6027b72f7851d373e454586ab85568c7cae837318a34d18131bf80d617e

See more details on using hashes here.

File details

Details for the file mlops_tempo-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: mlops_tempo-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 75.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.7.4

File hashes

Hashes for mlops_tempo-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9e4313a09ee18ed2b416d515c13f1fbc3b359701dd069cfe6af819407b51c5e9
MD5 f72e12ffab89a5a4d5400d5998b78b89
BLAKE2b-256 517582862901ffddb1eb305dcb5d03149fbfa6f25ea08359e6185870ee4e2f40

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page