Implementation of ML Optimization Methods in Python
Project description
Optimization Methods
Methods Discussed
- Golden Section Search Method
- BiSection Method
- Newton Method
- Secant Method
Golden Section Search Methods
>>> from mloptm.methods import Golden
>>> def f(x):
... return x**4 - 14*x**3 + 60*x**2 - 70*x
>>> op = Golden(f)
>>> minima = op.Minimize(a0=0, b0=2, eps=0.03)
>>> op.PrintOptimizationSteps()
Using Golden Optimization Medhod
Found Local Minima at x -> [0.777088]
Optimization Steps with [9] Steps
---------------------------------
a0 b0 a1 b1 Minima
-------- -------- -------- -------- --------
0 1.23607 0.763932 1.23607 0.618034
0.472136 1.23607 0.472136 0.763932 0.854102
0.472136 0.944272 0.763932 0.944272 0.708204
0.652476 0.944272 0.652476 0.763932 0.798374
0.652476 0.832816 0.763932 0.832816 0.742646
0.72136 0.832816 0.72136 0.763932 0.777088
0.763932 0.832816 0.763932 0.790243 0.798374
0.763932 0.806504 0.790243 0.806504 0.785218
0.763932 0.790243 0.780193 0.790243 0.777088
>>> op.PlotOptimizationSteps(xmin=0, xmax=2)
>>> op.ExportOptimizationSteps(xmin=0, xmax=2, filname="OptimizedFunction")
BiSection Method
>>> from mloptm.methods import BiSection
>>> def f(x):
... return x**4 - 14*x**3 + 60*x**2 - 70*x
>>> def df(x):
... return 4*x**3 - 14*3*x**2 + 120*x - 70
>>> op = BiSection(f, df)
>>> minima = op.Minimize(a0=0, b0=2, epochs=10)
>>> op.PrintOptimizationSteps()
Using BiSection Optimization Medhod
Found Local Minima at x -> [0.779297]
---------------------------------
a0 b0 (a0+b0)/2 f'((a0+b0)/2)
-------- ------- ----------- ---------------
0 1 1 12
0.5 1 0.5 -20
0.75 1 0.75 -1.9375
0.75 0.875 0.875 5.52344
0.75 0.8125 0.8125 1.91895
0.75 0.78125 0.78125 0.022583
0.765625 0.78125 0.765625 -0.949448
0.773438 0.78125 0.773438 -0.461435
0.777344 0.78125 0.777344 -0.218928
0.779297 0.78125 0.779297 -0.0980478
>>> op.PlotOptimizationSteps(xmin=0, xmax=2)
>>> op.ExportOptimizationSteps(xmin=0, xmax=2, filname="OptimizedFunction")
Newton Method
>>> from mloptm.methods import Newton
>>> def f(x):
... return x**4 - 14*x**3 + 60*x**2 - 70*x
>>> def df(x):
... return 4*x**3 - 14*3*x**2 + 120*x - 70
>>> def ddf(x):
... return 12*x**2 - 14*6*x + 120
>>> op = Newton(f, df, ddf)
>>> minima = op.Minimize(x0=0, eps=10**-5)
>>> op.PrintOptimizationSteps()
Using Newton Optimization Method
Found Local Minima at x -> [0.780884]
---------------------------------
xk xk+1 f'(xk+1) f''(xk+1)
-------- -------- ------------- -----------
0 0.583333 -13.4977 75.0833
0.583333 0.763103 -1.10786 62.8873
0.763103 0.780719 -0.0101707 61.7339
0.780719 0.780884 -8.85683e-07 61.7231
0.780884 0.780884 0 61.7231
>>> op.PlotOptimizationSteps(xmin=0, xmax=2)
>>> op.ExportOptimizationSteps(xmin=0, xmax=2, filname="OptimizedFunction")
Secant Method
>>> from mloptm.methods import Secant
>>> def f(x):
... return x**4 - 14*x**3 + 60*x**2 - 70*x
>>> def df(x):
... return 4*x**3 - 14*3*x**2 + 120*x - 70
>>> op = Secant(f, df)
>>> minima = op.Minimize(a0=0, b0=2, epochs=10)
>>> op.PrintOptimizationSteps()
Using Newton Optimization Method
Found Local Minima at x -> [0.780884]
---------------------------------
xk xk+1 f(xk+1) f'(xk+1)
-------- -------- --------- -------------
0 0.604282 -23.3462 -11.9401
0.1 0.733837 -24.3002 -2.97653
0.604282 0.776858 -24.3691 -0.249017
0.733837 0.780786 -24.3696 -0.00605475
0.776858 0.780884 -24.3696 -1.28637e-05
0.780786 0.780884 -24.3696 -6.67001e-10
>>> op.PlotOptimizationSteps(xmin=0, xmax=2)
>>> p.ExportOptimizationSteps(xmin=0, xmax=2, filname="OptimizedFunction")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mloptm-1.0.4.tar.gz
(6.8 kB
view details)
Built Distribution
File details
Details for the file mloptm-1.0.4.tar.gz
.
File metadata
- Download URL: mloptm-1.0.4.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c10fd07670729fb230e8c0aa98d1b75149da754053d623dc4bd79a1a549918bf |
|
MD5 | 1dc99b9e8d404862778f457b028e42fa |
|
BLAKE2b-256 | bae4bf0419d57a78d75561ddf3d98200067b62cfd334046f3856a3e036e89575 |
File details
Details for the file mloptm-1.0.4-py3-none-any.whl
.
File metadata
- Download URL: mloptm-1.0.4-py3-none-any.whl
- Upload date:
- Size: 7.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 923919d96c79c397787f0fd71b1adb27987a8aa1f8b721890d0aba68717e883b |
|
MD5 | 421538d1fd21fb9ad2f9d6474d31df9e |
|
BLAKE2b-256 | 2a97cc1971663af157b4c17a1db4dc2d8c8d993b7d8c60ed7cefbd518d2bfd9e |