Pytorch implementation of MLPMixer
Project description
MLP Mixer Pytorch
Pytorch implementation of MLP-Mixer.
Sample usage
foo@bar:❯ pip install mlp_mixer
from mlp_mixer import MLPMixer
model = MLPMixer(
img_size=IMG_SZ,
img_channels=IMG_CHANNELS,
num_classes=NUM_CLASSES,
mixer_depth=DEPTH,
num_patches=NUM_PATCHES,
num_channels=NUM_CHANNELS,
expansion=EXPANSION,
dropout=DROPOUT,
)
Citations
@misc{tolstikhin2021mlpmixer,
title = {MLP-Mixer: An all-MLP Architecture for Vision},
author = {Ilya Tolstikhin and Neil Houlsby and Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Thomas Unterthiner and Jessica Yung and Daniel Keysers and Jakob Uszkoreit and Mario Lucic and Alexey Dosovitskiy},
year = {2021},
eprint = {2105.01601},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mlp-mixer-0.0.1.tar.gz
(3.8 kB
view details)
Built Distribution
File details
Details for the file mlp-mixer-0.0.1.tar.gz
.
File metadata
- Download URL: mlp-mixer-0.0.1.tar.gz
- Upload date:
- Size: 3.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b848f2ad53e8201251ed1cec2ef85c6c3d1e6466ce6715227beff53e8037e31 |
|
MD5 | 783c71c781d024929b1785f309b070ae |
|
BLAKE2b-256 | 28469e1980a4e0b1fe8e65e4360f867a3aedb3905192340b832d98e02ccf8035 |
File details
Details for the file mlp_mixer-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: mlp_mixer-0.0.1-py3-none-any.whl
- Upload date:
- Size: 4.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 18c7e5e5aed08557cf29563050a727944506b8b26b7ddc2ad430a1463bed499d |
|
MD5 | 2cbc7d4b678c5a1b7cbf267403ebdf98 |
|
BLAKE2b-256 | 4074fad92cf0c3c7661372d7c0ad1bfb5371c0e3b3aa32ec912c9ac94c1d35bb |