MLP-Mixer in Keras/Tensorflow
Project description
MLP-Mixer in Keras
This is a simple keras implementation of MLP-Mixer. MLP-Mixer is an almost exclusivly multi-layer perceptions approach to vision like tasks.
Install
$ pip install mlp-mixer-keras
Example usage
from mlp_mixer_keras import MlpMixerModel
import numpy as np
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
model = MlpMixerModel(input_shape=x_train.shape[1:],
num_classes=len(np.unique(y_train)),
num_blocks=4,
patch_size=8,
hidden_dim=32,
tokens_mlp_dim=64,
channels_mlp_dim=128,
use_softmax=True)
model.compile(loss='sparse_categorical_crossentropy', metrics='acc')
model.fit(x_train, y_train, validation_data=(x_test, y_test))
References
MLP-Mixer: An all-MLP Architecture for Vision
Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, Alexey Dosovitskiy, MLP-Mixer: An all-MLP Architecture for Vision
@misc{tolstikhin2021mlpmixer,
title={MLP-Mixer: An all-MLP Architecture for Vision},
author={Ilya Tolstikhin and Neil Houlsby and Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Thomas Unterthiner and Jessica Yung and Daniel Keysers and Jakob Uszkoreit and Mario Lucic and Alexey Dosovitskiy},
year={2021},
eprint={2105.01601},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
MLP-Mixer: An all-MLP Architecture for Vision (Machine Learning Research Paper Explained)
Excellent Yannic Kilcher explainer video.
MLP Mixer - Pytorch
A pytorch implementation of MLP-Mixer. This repo helped a alot as I learned the ways of making a nice github repo for a project.
Phil Wang - lucidrains
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file mlp-mixer-keras-0.0.5.tar.gz
.
File metadata
- Download URL: mlp-mixer-keras-0.0.5.tar.gz
- Upload date:
- Size: 4.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac02cf51c95105440f594304c3d4dfea71b725455ecf9764437d8e7300d5cfdd |
|
MD5 | d126504ae6a3716030cd79c0fdabb571 |
|
BLAKE2b-256 | 4388bd2f0a5d12ba8f3e465c015b2aca86783d2d16e708491c575bc7ab35b127 |