Skip to main content

a flexible, fast machine learning library

Project description

mlpack is a fast, flexible machine learning library, written in C++, that aims to provide fast, extensible implementations of cutting-edge machine learning algorithms. mlpack provides these algorithms as standalone Python functions, which wrap the fast C++ implementations of the algorithms.

mlpack's techniques fall into a handful of categories:

  • Classification: logistic regression, perceptrons, random forests, linear SVMs, AdaBoost, etc.

  • Regression: linear regression, least angle regression, etc.

  • Clustering: Gaussian mixture models, k-means, mean shift, DBSCAN, etc.

  • Geometry: k-nearest-neighbor search, max-kernel search, locality sensitive hashing (LSH), etc.

  • Preprocessing: dataset splitting, binarization, scaling, one hot encoding, etc.

  • Misc. / Other: collaborative filtering, density estimation trees, Hidden Markov Models, kernel density estimation (KDE), etc.

  • Transformations: kernel PCA, sparse coding, large margin nearest neighbors, PCA, etc.

For more documentation on each individual function that mlpack provides, see the Python binding documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlpack-4.6.1-pp39-pypy39_pp73-win_amd64.whl (25.4 MB view details)

Uploaded PyPy Windows x86-64

mlpack-4.6.1-cp313-cp313-win_amd64.whl (25.5 MB view details)

Uploaded CPython 3.13 Windows x86-64

mlpack-4.6.1-cp313-cp313-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

mlpack-4.6.1-cp313-cp313-macosx_10_13_x86_64.whl (18.7 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

mlpack-4.6.1-cp312-cp312-win_amd64.whl (25.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

mlpack-4.6.1-cp312-cp312-win32.whl (18.8 MB view details)

Uploaded CPython 3.12 Windows x86

mlpack-4.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (40.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlpack-4.6.1-cp312-cp312-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mlpack-4.6.1-cp312-cp312-macosx_10_13_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

mlpack-4.6.1-cp311-cp311-win_amd64.whl (25.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

mlpack-4.6.1-cp311-cp311-win32.whl (18.8 MB view details)

Uploaded CPython 3.11 Windows x86

mlpack-4.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (40.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlpack-4.6.1-cp311-cp311-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mlpack-4.6.1-cp311-cp311-macosx_10_9_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

mlpack-4.6.1-cp310-cp310-win_amd64.whl (25.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

mlpack-4.6.1-cp310-cp310-win32.whl (18.8 MB view details)

Uploaded CPython 3.10 Windows x86

mlpack-4.6.1-cp310-cp310-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mlpack-4.6.1-cp310-cp310-macosx_10_9_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

mlpack-4.6.1-cp39-cp39-win_amd64.whl (25.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

mlpack-4.6.1-cp39-cp39-win32.whl (18.8 MB view details)

Uploaded CPython 3.9 Windows x86

mlpack-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (40.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlpack-4.6.1-cp39-cp39-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mlpack-4.6.1-cp39-cp39-macosx_10_9_x86_64.whl (19.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

mlpack-4.6.1-cp38-cp38-win_amd64.whl (25.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

mlpack-4.6.1-cp38-cp38-win32.whl (18.8 MB view details)

Uploaded CPython 3.8 Windows x86

mlpack-4.6.1-cp38-cp38-macosx_11_0_arm64.whl (16.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mlpack-4.6.1-cp38-cp38-macosx_10_9_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file mlpack-4.6.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0287872833595a33b4766c3e068633612093afd6cdc042826853b434ab3b2805
MD5 a64e9e124314445b209c5c088ab38050
BLAKE2b-256 b70a5da641a5e24d5d33684aafba142226c0f87f20bb40afab4ee0a52fd785e4

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 25.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 3a19b94e64aa3b1f543875e170a666fbf0be353343b391a635f669d25aa861f4
MD5 4a62fbcf18efd248080b6665361bd980
BLAKE2b-256 7920be4d65e44bde4ed96919c3107ce4e08c57c3e78a78ebeecfa20ae3aa76e8

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e1206ed5ade28dc77a97848fd06e9da62fd1c61b275564387f083a6de6b07f4
MD5 de35aaef5d3340ce57b9b80e63fedf20
BLAKE2b-256 d64a3a16586d25dcf00155f37e7c60363efe73ffee0ff9f555c2f61eccdb738b

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ca026887e4784c87086d239b294375d4a53d1f142e4dcc08b8dab8d46d0c5f1a
MD5 317937e0dfd04a11924b28a671b4534f
BLAKE2b-256 7e947f5860fc8a4ed85a8fd542911bf817459d9989eedaee0239e0df26981908

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 25.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4aae84c4d6ef5521073c6fdcc4bae6d18eb968a1a8ca40b7427bd41ad87132e2
MD5 9554fbaf190e037b4b9964b5ab175f2e
BLAKE2b-256 f6ce7112c2e04b3f12925f62e94428dcbd583fcd744ba5c2c394c6a9a5b93d29

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 2e1dc7fa037fd214b9b7b700d650e63e3127ba4be0a014eb1b2d34af67a54f0c
MD5 8056f5f0b2c184781ac564ef82f6eda0
BLAKE2b-256 a86e15279936735bf7d757794ef6038af11a9ed9c4caf3c8f1c8e6d2c6f0d0cb

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ae36d1669c274a8e6c816f3708712ba58a1f4be2bba3ec94d94285099534e11
MD5 189966a840e8bf627d3537c0d56b0f3c
BLAKE2b-256 8adc89933a8f6337e8ca17a9c85911df8c7b75af18f788bb3667ce5a01e4803d

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 85326835c6bb0a9ab1a9ac972028cb419a78052b78d55356c8c178d0aba919b0
MD5 b00fa13d4d6cd85b1c99c687649a0aaa
BLAKE2b-256 b60ae8ab0fad0d6b32d7a8d2adcd513b0bd499492297a8c71fcf4440673e3975

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8d414b4bf7ce621fbea579982311d7d695600b0013a184052859cc8a9119b74f
MD5 d8ae2eef38d4fc0174ec052a931ec369
BLAKE2b-256 5696412f14eef1a8a98214947e2c4979b29fe39f1faa7df624092824f56d29b9

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 25.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6526acb16cef67c907fe1f879778fd05e9e8ebbf02f32ff13cbc27027b880c3d
MD5 942f27a9143ae83e42c12733633ded44
BLAKE2b-256 54c2478acb69ca6bd93fd18170ff80a2c9fc1759a6f800b0089c7d8b8f08e711

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 01f57adb5652381a7101ab9be82ad0655ac41f937636ced6282f573d97eec16b
MD5 6878d219c5b4c09d5991e8acb4b9af83
BLAKE2b-256 aad2a9a9e563d6f457930a4366e2c1ab1454d7192a8e3bbafd9fc427d0a62e2e

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d6f6e8dfe038230a2a8a8563ee04d1884f8071d627fe743afeaa2f33de465c2
MD5 136a61279fc753acdff381e74bd133bf
BLAKE2b-256 79f34819f5548c714bb65bc235af859feb418800a880073c2c3b58bc09e49bb0

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 535c561381dcc8b182fb77099e9fb443a5f90094208abede22ecddd3e1a497ec
MD5 23d83f8128ebefdb5e3ae2f84ccfc653
BLAKE2b-256 159d8e7fee056dd4ca21c2a8cafae35451f6b370170898c1ffccf8aadeaa4673

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb14a4ebd9f36160db94f88d548c6a2b7dca9663f54620883e2f186c8120d164
MD5 95c5ab80d31074c0042a09365df91ab9
BLAKE2b-256 f79270769aaacc5028c5fc00082caac089aaa4f5809f44efdb5389ac29cb8e18

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 25.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 af4562e28b8cbedae3f7c54bb5247859972898e9306bb65a871de861a67a2235
MD5 4e64fdadd1c239bf1f013868633165c5
BLAKE2b-256 42288fe023c6fa53d3131cb75fddc4d173ab533bbbca323bfb00cb33c6b0c6f9

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 31e9824b9b93451758e14a18b74c2d90edf48cca89c506332ec08baacda94f1a
MD5 6fd2242d9b905de6c361de308023bbf7
BLAKE2b-256 85297ba1826cc5506f620a794dda6cde203a5f7ea865016b9df88660c2275b5c

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3499fa4eb19e17af856820e090c4d684afd7faea32fd0cae9271773eee3d2d62
MD5 fa08eb9adb64f6937c69d8017ca1d643
BLAKE2b-256 51a6e1f7ad3ce313dc2078316d063f3b15e7c3e1d1c2f63388765df16c8401c7

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d7037dbaf46d7fb1274a325c86f35209326667a9a1f16ad81d170830f9d7bbfb
MD5 3fa7f2491c0a53f30db6662eb267b7d0
BLAKE2b-256 70b0fe4cc32bb4083caa6de5d51bef4c26b6ba7e041a1f584d66ccc582def236

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 25.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7d79816062449f0282c3e51f057fc59a47613ff281d1e9457d594725997c22b7
MD5 c74b5eabe662b020105bef34c488091c
BLAKE2b-256 0c26cf92a54903b803bd00b2336ea0f3bf3e40f1ed19b6a97099220627098d57

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5f94ee9c336c22af5c81facc07107421d370a7e577d6bb3b55d2a820c0ca1da7
MD5 8e5f3f748c58f4f21231ade8df6b6078
BLAKE2b-256 a70bab9d5794fd26f809a1c9043f74488fbfc1cbb7694312bc86393bbc9d58e5

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60e6075f6710b30d7fdf49be4047190254be708cef2df396dfa3773aedb3f20f
MD5 7149d52730ae72d4841ca00713ec0095
BLAKE2b-256 edaa85417a50afde3fe5d0cb43bc3efffe18cda411c5a6c4c3df511ce7f5c607

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 22824179aba8a7d45784c1fcf5547ac3407d1e25d46fc55db1b9797d6e2ae055
MD5 fc8a7178db9cf63a1357e9a304d89e16
BLAKE2b-256 0673240fba02639ac733b831f76fd2062d679a6416c77464f9f13e64d70b3d1f

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3dcb7a2ec03f620ce55cc12c7b0e3b2c75695f9ee513440f9e829bd153da0cce
MD5 a406b0dc3115490446629c1f7dcc4971
BLAKE2b-256 211e67b3365b845b6156510c4a9d9bdec42fd85c8dfef492ed8f6e091c72f078

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 25.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2d298a513604009bd4560286673827a0bf033eb64379f435b5a3ae810df679a6
MD5 9e220e8665bb592c53fb07ba30d0ea3a
BLAKE2b-256 b249bc9b4660c002693462208b9c6233fdc8f013d79b94e5ef82229dfc7f7c55

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: mlpack-4.6.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.3

File hashes

Hashes for mlpack-4.6.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b8538a4c13014ce793b4a0afab8df1915918af9820e14f9f0d30660833e62ad8
MD5 02a4e052cb4ddfbfeebb76d5f3948f93
BLAKE2b-256 2f3b224ba3430345f1996d8df7d2fb9c4ca62210379c35a39b14dc424eddaf54

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 90efa503720d4b18261f2390954f146e127183a9961605a4bc52d01a93b4d1a1
MD5 e154713c32c845511e56e5204e1614d1
BLAKE2b-256 69d51b951c126d0e0fc891824a5ff6faecad3d5962e1eecaddc8a3f2e5563451

See more details on using hashes here.

File details

Details for the file mlpack-4.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for mlpack-4.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f09c909ec5f74ec6d4ade4bd2b48c8afddfbf848d9993e504febac4d2e03889
MD5 947d877330501f2dfc1ae4d01f7fe0bb
BLAKE2b-256 c322d4d5c344d2829f465ef8fff33f237b4bb8bb74af09718186abc3dc744f27

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page