Skip to main content

mlreflect is a Python package for training and using artificial neural networks to analyze specular X-ray and neutron reflectivity data. The training and usage of the neural network models is done via Keras as an API for TensorFlow.

Project description

mlreflect

mlreflect is a Python package for training and using artificial neural networks to analyze specular X-ray and neutron reflectivity data. The training and usage of the neural network models is done via Keras as an API for TensorFlow.

Installation

The mlreflect package can be installed directly from the command line using the python package manager pip:

pip install mlreflect

In case the newest version is not available on PyPI, the package can also be installed locally. Download the package, unzip it and navigate to the folder containing the downloaded mlreflect folder. Then use:

pip install mlreflect/

Online documentation

Documentation and API reference can be found online on https://mlreflect.readthedocs.io/en/latest/

Usage example

The package can then be imported in python using

import mlreflect

or

from mlreflect import <module>

An example of how to generate training data, train the model and test it on experimental data is shown in the example/notebooks/training_example.ipynb Jupyter notebook.

An example of how to use the default pre-trained model for single layers on Si/SiOx substrates to fit data directly from a SPEC file is shown in examples/notebooks/spec_usage_example.ipynb Jupyter notebook.

A detailed explanation as well as API info can be found in the documentation.

Authors

Main author

Contributors

  • Vladimir Starostin (Institut für Angewandte Physik, University of Tübingen)
  • Christos Karapanagiotis (Institut für Physik, Humboldt Universität zu Berlin)
  • Alexander Hinderhofer (Institut für Angewandte Physik, University of Tübingen)
  • Alexander Gerlach (Institut für Angewandte Physik, University of Tübingen)
  • Linus Pithan (ESRF The European Synchrotron)
  • Sascha Liehr (Bundesanstalt für Materialforschung und -prüfung (BAM))
  • Frank Schreiber (Institut für Angewandte Physik, University of Tübingen)
  • Stefan Kowarik (Bundesanstalt für Materialforschung und -prüfung (BAM) and Institut für Physik, Humboldt Universität zu Berlin)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlreflect-0.21.1.tar.gz (23.1 MB view details)

Uploaded Source

Built Distribution

mlreflect-0.21.1-py3-none-any.whl (23.1 MB view details)

Uploaded Python 3

File details

Details for the file mlreflect-0.21.1.tar.gz.

File metadata

  • Download URL: mlreflect-0.21.1.tar.gz
  • Upload date:
  • Size: 23.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for mlreflect-0.21.1.tar.gz
Algorithm Hash digest
SHA256 6af7b64cddd1fed92f17561660480aa4622b20476de6d572897db8b8003e14ba
MD5 daa099d0507e131fea0a241d92c70f46
BLAKE2b-256 752e85600533b4fbf0e35513daf5607040c35c4f415410ac5eacfdc6f5f09fd5

See more details on using hashes here.

File details

Details for the file mlreflect-0.21.1-py3-none-any.whl.

File metadata

  • Download URL: mlreflect-0.21.1-py3-none-any.whl
  • Upload date:
  • Size: 23.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.9.12

File hashes

Hashes for mlreflect-0.21.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4a47ba834f64276b56b12e50b351313d37480b9d226f5901fea1d08d48d05d74
MD5 3a7549511d2ac740844d8b14e6295c83
BLAKE2b-256 dc008e6d750afea3f3b935a7ad4e4ffff7584bb387c9bf6de213d3709c4f79dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page