Skip to main content

Register, retrieve and get metadata from machine learning models.

Project description

ml-registry

Register, manage, and track machine learning components easily, such as PyTorch models and optimizers. You can retrieve component metadata, inspect signatures, and ensure instance integrity through deterministic hashes.

Introduction

Tracking machine learning components can be challenging, especially when you have to name them, track their parameters, and ensure the instance you're using matches the one you trained. This library addresses these issues by providing a simple way to register, manage, and track machine learning components, such as models, optimizers, and datasets. It uses cryptographic hashes to create unique identifiers for components based on their names, signatures, and parameters.

Installation

Install the package with pip:

pip install mlregistry

Using conda:

conda install pip
pip install mlregistry

Example

Suppose you have a Perceptron model built with PyTorch. To start using the registry, import the Registry class and register the class you want to track:

from models import Perceptron
from mlregistry import Registry

# Register components
Registry.register(Perceptron)

The Registry class injects a metadata factory into the Perceptron model. This metadata includes:

  • Model name: Used to retrieve the model instance from the registry and recognize it during serialization.
  • Unique hash: Useful for identifying the model instance locally, based on the model’s name, signature, and constructor parameters.
  • Arguments: A tuple with positional and keyword arguments for reconstructing the model instance.
  • Signature: Includes model annotations, which is useful for exposing the model’s configuration and usage in request-response APIs.
from mlregistry import get_metadata, get_hash, get_signature

registry = Registry() #Create a registry instance before or after registry of classes. 
perceptron = Perceptron(784, 256, 10, p=0.5, bias=True)

# Get metadata, hash, and signature of the model instance
hash = get_hash(perceptron)
print(hash)  # e.g., "1a79a4d60de6718e8e5b326e338ae533"

metadata = get_metadata(perceptron)
print(metadata.name)  # Perceptron
print(metadata.args)  # (784, 256, 10)
print(metadata.kwargs)  # {'p': 0.5, 'bias': True}

signature = get_signature(perceptron)
print(signature)  # {input_size: int, hidden_size: int, output_size: int, p: float, bias: bool}

You can retrieve the model type from the registry:

model_type = registry.get('Perceptron')
model_instance = model_type(input_size=784, hidden_size=256, output_size=10, p=0.5, bias=True)

assert isinstance(model_instance, Perceptron)

This works with other components as well, like optimizers and datasets. For complex setups, consider creating a repository class to manage components and dependencies, simplifying pipeline persistence.

from torch.nn import Module, CrossEntropyLoss
from torch.optim import Optimizer, Adam
from torchvision.datasets import MNIST

class Repository:
    models = Registry[Module]()
    criterions = Registry[Module]()
    optimizers = Registry[Optimizer](excluded_positions=[0], exclude_parameters={'params'})
    datasets = Registry[Dataset](excluded_positions=[0], exclude_parameters={'root', 'download'})

Repository.models.register(Perceptron)
Repository.optimizers.register(Adam)
Repository.datasets.register(MNIST)

model = Perceptron(784, 256, 10, p=0.5, bias=True)
criterion = CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr=1e-3)
dataset = MNIST('data', train=True, download=True)

dataset_metadata = get_metadata(dataset)
print(dataset_metadata)  # Serialize dataset metadata

optimizer_metadata = get_metadata(optimizer)
print(optimizer_metadata)  # Excluded parameters like 'params' or the first positional argument won’t appear in metadata

This approach enables component tracking and serialization without worrying about naming conflicts or manual parameter tracking.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlregistry-0.3.0.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

mlregistry-0.3.0-py3-none-any.whl (5.2 kB view details)

Uploaded Python 3

File details

Details for the file mlregistry-0.3.0.tar.gz.

File metadata

  • Download URL: mlregistry-0.3.0.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.1 Linux/6.5.0-1025-azure

File hashes

Hashes for mlregistry-0.3.0.tar.gz
Algorithm Hash digest
SHA256 9f836f63347b34511a45561f21fc584c8856e60c39cc831572c40c0cbab64649
MD5 9a097db5236e3528d19292a2b235f0d7
BLAKE2b-256 69b2ce454f466d5f6f1e3741acfb8308821776e7c3593d84ec6832fc50e6b916

See more details on using hashes here.

File details

Details for the file mlregistry-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: mlregistry-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 5.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.1 Linux/6.5.0-1025-azure

File hashes

Hashes for mlregistry-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 69d8ac100aabd9810a307c499b513d036ffc6404dc2d0c5aba14899e0b71199a
MD5 547131b6f22ff25985758729a16ab135
BLAKE2b-256 3347a162a2a3fb5e7842821ab68fa392b8bbb34ea2b9c136b0201781998b6156

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page